Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablsscmn Structured version   Visualization version   GIF version

Theorem bj-ablsscmn 36154
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablsscmn Abel ⊆ CMnd

Proof of Theorem bj-ablsscmn
StepHypRef Expression
1 df-abl 19650 . 2 Abel = (Grp ∩ CMnd)
2 inss2 4229 . 2 (Grp ∩ CMnd) ⊆ CMnd
31, 2eqsstri 4016 1 Abel ⊆ CMnd
Colors of variables: wff setvar class
Syntax hints:  cin 3947  wss 3948  Grpcgrp 18818  CMndccmn 19647  Abelcabl 19648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-abl 19650
This theorem is referenced by:  bj-ablsscmnel  36155
  Copyright terms: Public domain W3C validator