![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablsscmn | Structured version Visualization version GIF version |
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ablsscmn | ⊢ Abel ⊆ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19722 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | inss2 4225 | . 2 ⊢ (Grp ∩ CMnd) ⊆ CMnd | |
3 | 1, 2 | eqsstri 4012 | 1 ⊢ Abel ⊆ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3943 ⊆ wss 3944 Grpcgrp 18875 CMndccmn 19719 Abelcabl 19720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-in 3951 df-ss 3961 df-abl 19722 |
This theorem is referenced by: bj-ablsscmnel 36681 |
Copyright terms: Public domain | W3C validator |