![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablsscmn | Structured version Visualization version GIF version |
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ablsscmn | ⊢ Abel ⊆ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19650 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | inss2 4229 | . 2 ⊢ (Grp ∩ CMnd) ⊆ CMnd | |
3 | 1, 2 | eqsstri 4016 | 1 ⊢ Abel ⊆ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3947 ⊆ wss 3948 Grpcgrp 18818 CMndccmn 19647 Abelcabl 19648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-abl 19650 |
This theorem is referenced by: bj-ablsscmnel 36155 |
Copyright terms: Public domain | W3C validator |