Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablsscmn Structured version   Visualization version   GIF version

Theorem bj-ablsscmn 37221
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablsscmn Abel ⊆ CMnd

Proof of Theorem bj-ablsscmn
StepHypRef Expression
1 df-abl 19801 . 2 Abel = (Grp ∩ CMnd)
2 inss2 4246 . 2 (Grp ∩ CMnd) ⊆ CMnd
31, 2eqsstri 4030 1 Abel ⊆ CMnd
Colors of variables: wff setvar class
Syntax hints:  cin 3962  wss 3963  Grpcgrp 18949  CMndccmn 19798  Abelcabl 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1538  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-rab 3433  df-v 3479  df-in 3970  df-ss 3980  df-abl 19801
This theorem is referenced by:  bj-ablsscmnel  37222
  Copyright terms: Public domain W3C validator