Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablsscmn Structured version   Visualization version   GIF version

Theorem bj-ablsscmn 37345
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablsscmn Abel ⊆ CMnd

Proof of Theorem bj-ablsscmn
StepHypRef Expression
1 df-abl 19699 . 2 Abel = (Grp ∩ CMnd)
2 inss2 4187 . 2 (Grp ∩ CMnd) ⊆ CMnd
31, 2eqsstri 3977 1 Abel ⊆ CMnd
Colors of variables: wff setvar class
Syntax hints:  cin 3897  wss 3898  Grpcgrp 18850  CMndccmn 19696  Abelcabl 19697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915  df-abl 19699
This theorem is referenced by:  bj-ablsscmnel  37346
  Copyright terms: Public domain W3C validator