Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablsscmn | Structured version Visualization version GIF version |
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ablsscmn | ⊢ Abel ⊆ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19304 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | inss2 4160 | . 2 ⊢ (Grp ∩ CMnd) ⊆ CMnd | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ Abel ⊆ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3882 ⊆ wss 3883 Grpcgrp 18492 CMndccmn 19301 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-abl 19304 |
This theorem is referenced by: bj-ablsscmnel 35377 |
Copyright terms: Public domain | W3C validator |