![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablsscmn | Structured version Visualization version GIF version |
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ablsscmn | ⊢ Abel ⊆ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19801 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | inss2 4246 | . 2 ⊢ (Grp ∩ CMnd) ⊆ CMnd | |
3 | 1, 2 | eqsstri 4030 | 1 ⊢ Abel ⊆ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3962 ⊆ wss 3963 Grpcgrp 18949 CMndccmn 19798 Abelcabl 19799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-v 3479 df-in 3970 df-ss 3980 df-abl 19801 |
This theorem is referenced by: bj-ablsscmnel 37222 |
Copyright terms: Public domain | W3C validator |