![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablsscmn | Structured version Visualization version GIF version |
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ablsscmn | ⊢ Abel ⊆ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19740 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | inss2 4224 | . 2 ⊢ (Grp ∩ CMnd) ⊆ CMnd | |
3 | 1, 2 | eqsstri 4007 | 1 ⊢ Abel ⊆ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3939 ⊆ wss 3940 Grpcgrp 18892 CMndccmn 19737 Abelcabl 19738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-in 3947 df-ss 3957 df-abl 19740 |
This theorem is referenced by: bj-ablsscmnel 36814 |
Copyright terms: Public domain | W3C validator |