Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablsscmn Structured version   Visualization version   GIF version

Theorem bj-ablsscmn 36813
Description: Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablsscmn Abel ⊆ CMnd

Proof of Theorem bj-ablsscmn
StepHypRef Expression
1 df-abl 19740 . 2 Abel = (Grp ∩ CMnd)
2 inss2 4224 . 2 (Grp ∩ CMnd) ⊆ CMnd
31, 2eqsstri 4007 1 Abel ⊆ CMnd
Colors of variables: wff setvar class
Syntax hints:  cin 3939  wss 3940  Grpcgrp 18892  CMndccmn 19737  Abelcabl 19738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-in 3947  df-ss 3957  df-abl 19740
This theorem is referenced by:  bj-ablsscmnel  36814
  Copyright terms: Public domain W3C validator