Detailed syntax breakdown of Definition df-cmn
| Step | Hyp | Ref
| Expression |
| 1 | | ccmn 19798 |
. 2
class
CMnd |
| 2 | | va |
. . . . . . . 8
setvar 𝑎 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 4 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 6 | | vg |
. . . . . . . . 9
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 8 | | cplusg 17297 |
. . . . . . . 8
class
+g |
| 9 | 7, 8 | cfv 6561 |
. . . . . . 7
class
(+g‘𝑔) |
| 10 | 3, 5, 9 | co 7431 |
. . . . . 6
class (𝑎(+g‘𝑔)𝑏) |
| 11 | 5, 3, 9 | co 7431 |
. . . . . 6
class (𝑏(+g‘𝑔)𝑎) |
| 12 | 10, 11 | wceq 1540 |
. . . . 5
wff (𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎) |
| 13 | | cbs 17247 |
. . . . . 6
class
Base |
| 14 | 7, 13 | cfv 6561 |
. . . . 5
class
(Base‘𝑔) |
| 15 | 12, 4, 14 | wral 3061 |
. . . 4
wff
∀𝑏 ∈
(Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎) |
| 16 | 15, 2, 14 | wral 3061 |
. . 3
wff
∀𝑎 ∈
(Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎) |
| 17 | | cmnd 18747 |
. . 3
class
Mnd |
| 18 | 16, 6, 17 | crab 3436 |
. 2
class {𝑔 ∈ Mnd ∣
∀𝑎 ∈
(Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
| 19 | 1, 18 | wceq 1540 |
1
wff CMnd =
{𝑔 ∈ Mnd ∣
∀𝑎 ∈
(Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |