Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrp Structured version   Visualization version   GIF version

Theorem bj-ablssgrp 35374
Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrp Abel ⊆ Grp

Proof of Theorem bj-ablssgrp
StepHypRef Expression
1 df-abl 19304 . 2 Abel = (Grp ∩ CMnd)
2 inss1 4159 . 2 (Grp ∩ CMnd) ⊆ Grp
31, 2eqsstri 3951 1 Abel ⊆ Grp
Colors of variables: wff setvar class
Syntax hints:  cin 3882  wss 3883  Grpcgrp 18492  CMndccmn 19301  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-abl 19304
This theorem is referenced by:  bj-ablssgrpel  35375
  Copyright terms: Public domain W3C validator