Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrp Structured version   Visualization version   GIF version

Theorem bj-ablssgrp 36647
Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrp Abel ⊆ Grp

Proof of Theorem bj-ablssgrp
StepHypRef Expression
1 df-abl 19693 . 2 Abel = (Grp ∩ CMnd)
2 inss1 4220 . 2 (Grp ∩ CMnd) ⊆ Grp
31, 2eqsstri 4008 1 Abel ⊆ Grp
Colors of variables: wff setvar class
Syntax hints:  cin 3939  wss 3940  Grpcgrp 18853  CMndccmn 19690  Abelcabl 19691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3947  df-ss 3957  df-abl 19693
This theorem is referenced by:  bj-ablssgrpel  36648
  Copyright terms: Public domain W3C validator