| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablssgrp | Structured version Visualization version GIF version | ||
| Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ablssgrp | ⊢ Abel ⊆ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 19720 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | inss1 4203 | . 2 ⊢ (Grp ∩ CMnd) ⊆ Grp | |
| 3 | 1, 2 | eqsstri 3996 | 1 ⊢ Abel ⊆ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3916 ⊆ wss 3917 Grpcgrp 18872 CMndccmn 19717 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 df-abl 19720 |
| This theorem is referenced by: bj-ablssgrpel 37272 |
| Copyright terms: Public domain | W3C validator |