Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrp Structured version   Visualization version   GIF version

Theorem bj-ablssgrp 37255
Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrp Abel ⊆ Grp

Proof of Theorem bj-ablssgrp
StepHypRef Expression
1 df-abl 19797 . 2 Abel = (Grp ∩ CMnd)
2 inss1 4236 . 2 (Grp ∩ CMnd) ⊆ Grp
31, 2eqsstri 4029 1 Abel ⊆ Grp
Colors of variables: wff setvar class
Syntax hints:  cin 3949  wss 3950  Grpcgrp 18947  CMndccmn 19794  Abelcabl 19795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-in 3957  df-ss 3967  df-abl 19797
This theorem is referenced by:  bj-ablssgrpel  37256
  Copyright terms: Public domain W3C validator