![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ablssgrp | Structured version Visualization version GIF version |
Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ablssgrp | ⊢ Abel ⊆ Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19693 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | inss1 4220 | . 2 ⊢ (Grp ∩ CMnd) ⊆ Grp | |
3 | 1, 2 | eqsstri 4008 | 1 ⊢ Abel ⊆ Grp |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3939 ⊆ wss 3940 Grpcgrp 18853 CMndccmn 19690 Abelcabl 19691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 df-abl 19693 |
This theorem is referenced by: bj-ablssgrpel 36648 |
Copyright terms: Public domain | W3C validator |