Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrp Structured version   Visualization version   GIF version

Theorem bj-ablssgrp 37316
Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrp Abel ⊆ Grp

Proof of Theorem bj-ablssgrp
StepHypRef Expression
1 df-abl 19696 . 2 Abel = (Grp ∩ CMnd)
2 inss1 4187 . 2 (Grp ∩ CMnd) ⊆ Grp
31, 2eqsstri 3981 1 Abel ⊆ Grp
Colors of variables: wff setvar class
Syntax hints:  cin 3901  wss 3902  Grpcgrp 18846  CMndccmn 19693  Abelcabl 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-ss 3919  df-abl 19696
This theorem is referenced by:  bj-ablssgrpel  37317
  Copyright terms: Public domain W3C validator