| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 19713 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | 1 | elin2 4166 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18865 CMndccmn 19710 Abelcabl 19711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-abl 19713 |
| This theorem is referenced by: ablgrp 19715 ablcmn 19717 isabl2 19720 ablpropd 19722 isabld 19725 ghmabl 19762 cntrabl 19773 prdsabld 19792 unitabl 20293 tsmsinv 24035 tgptsmscls 24037 tsmsxplem1 24040 tsmsxplem2 24041 abliso 32977 primrootsunit1 42085 gicabl 43088 2zrngaabl 48238 pgrpgt2nabl 48354 |
| Copyright terms: Public domain | W3C validator |