![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19825 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Grpcgrp 18973 CMndccmn 19822 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-abl 19825 |
This theorem is referenced by: ablgrp 19827 ablcmn 19829 isabl2 19832 ablpropd 19834 isabld 19837 ghmabl 19874 cntrabl 19885 prdsabld 19904 unitabl 20410 tsmsinv 24177 tgptsmscls 24179 tsmsxplem1 24182 tsmsxplem2 24183 abliso 33022 primrootsunit1 42054 gicabl 43056 2zrngaabl 47973 pgrpgt2nabl 48091 |
Copyright terms: Public domain | W3C validator |