Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19438 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | 1 | elin2 4137 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2104 Grpcgrp 18626 CMndccmn 19435 Abelcabl 19436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-abl 19438 |
This theorem is referenced by: ablgrp 19440 ablcmn 19442 isabl2 19444 ablpropd 19446 isabld 19449 ghmabl 19483 cntrabl 19493 prdsabld 19512 unitabl 19959 tsmsinv 23348 tgptsmscls 23350 tsmsxplem1 23353 tsmsxplem2 23354 abliso 31354 gicabl 41120 2zrngaabl 45746 pgrpgt2nabl 45946 |
Copyright terms: Public domain | W3C validator |