| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 19689 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | 1 | elin2 4162 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18841 CMndccmn 19686 Abelcabl 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-abl 19689 |
| This theorem is referenced by: ablgrp 19691 ablcmn 19693 isabl2 19696 ablpropd 19698 isabld 19701 ghmabl 19738 cntrabl 19749 prdsabld 19768 unitabl 20269 tsmsinv 24011 tgptsmscls 24013 tsmsxplem1 24016 tsmsxplem2 24017 abliso 32950 primrootsunit1 42058 gicabl 43061 2zrngaabl 48211 pgrpgt2nabl 48327 |
| Copyright terms: Public domain | W3C validator |