MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabl Structured version   Visualization version   GIF version

Theorem isabl 19714
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 19713 . 2 Abel = (Grp ∩ CMnd)
21elin2 4166 1 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Grpcgrp 18865  CMndccmn 19710  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-abl 19713
This theorem is referenced by:  ablgrp  19715  ablcmn  19717  isabl2  19720  ablpropd  19722  isabld  19725  ghmabl  19762  cntrabl  19773  prdsabld  19792  unitabl  20293  tsmsinv  24035  tgptsmscls  24037  tsmsxplem1  24040  tsmsxplem2  24041  abliso  32977  primrootsunit1  42085  gicabl  43088  2zrngaabl  48238  pgrpgt2nabl  48354
  Copyright terms: Public domain W3C validator