Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group." (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 18976 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | 1 | elin2 4102 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Grpcgrp 18169 CMndccmn 18973 Abelcabl 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-abl 18976 |
This theorem is referenced by: ablgrp 18978 ablcmn 18980 isabl2 18982 ablpropd 18984 isabld 18987 ghmabl 19021 cntrabl 19031 prdsabld 19050 unitabl 19489 tsmsinv 22848 tgptsmscls 22850 tsmsxplem1 22853 tsmsxplem2 22854 abliso 30831 gicabl 40416 2zrngaabl 44935 pgrpgt2nabl 45135 |
Copyright terms: Public domain | W3C validator |