| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 19770 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | 1 | elin2 4183 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Grpcgrp 18921 CMndccmn 19767 Abelcabl 19768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-abl 19770 |
| This theorem is referenced by: ablgrp 19772 ablcmn 19774 isabl2 19777 ablpropd 19779 isabld 19782 ghmabl 19819 cntrabl 19830 prdsabld 19849 unitabl 20353 tsmsinv 24103 tgptsmscls 24105 tsmsxplem1 24108 tsmsxplem2 24109 abliso 32985 primrootsunit1 42073 gicabl 43089 2zrngaabl 48139 pgrpgt2nabl 48255 |
| Copyright terms: Public domain | W3C validator |