| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 19681 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | 1 | elin2 4156 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18831 CMndccmn 19678 Abelcabl 19679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-abl 19681 |
| This theorem is referenced by: ablgrp 19683 ablcmn 19685 isabl2 19688 ablpropd 19690 isabld 19693 ghmabl 19730 cntrabl 19741 prdsabld 19760 unitabl 20288 tsmsinv 24052 tgptsmscls 24054 tsmsxplem1 24057 tsmsxplem2 24058 abliso 33009 primrootsunit1 42090 gicabl 43092 2zrngaabl 48254 pgrpgt2nabl 48370 |
| Copyright terms: Public domain | W3C validator |