MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabl Structured version   Visualization version   GIF version

Theorem isabl 19817
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 19816 . 2 Abel = (Grp ∩ CMnd)
21elin2 4213 1 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  Grpcgrp 18964  CMndccmn 19813  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-in 3970  df-abl 19816
This theorem is referenced by:  ablgrp  19818  ablcmn  19820  isabl2  19823  ablpropd  19825  isabld  19828  ghmabl  19865  cntrabl  19876  prdsabld  19895  unitabl  20401  tsmsinv  24172  tgptsmscls  24174  tsmsxplem1  24177  tsmsxplem2  24178  abliso  33024  primrootsunit1  42079  gicabl  43088  2zrngaabl  48094  pgrpgt2nabl  48211
  Copyright terms: Public domain W3C validator