MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabl Structured version   Visualization version   GIF version

Theorem isabl 19371
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 19370 . 2 Abel = (Grp ∩ CMnd)
21elin2 4135 1 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2109  Grpcgrp 18558  CMndccmn 19367  Abelcabl 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-abl 19370
This theorem is referenced by:  ablgrp  19372  ablcmn  19374  isabl2  19376  ablpropd  19378  isabld  19381  ghmabl  19415  cntrabl  19425  prdsabld  19444  unitabl  19891  tsmsinv  23280  tgptsmscls  23282  tsmsxplem1  23285  tsmsxplem2  23286  abliso  31284  gicabl  40904  2zrngaabl  45454  pgrpgt2nabl  45654
  Copyright terms: Public domain W3C validator