| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 19769 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | 1 | elin2 4183 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18921 CMndccmn 19766 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-abl 19769 |
| This theorem is referenced by: ablgrp 19771 ablcmn 19773 isabl2 19776 ablpropd 19778 isabld 19781 ghmabl 19818 cntrabl 19829 prdsabld 19848 unitabl 20349 tsmsinv 24091 tgptsmscls 24093 tsmsxplem1 24096 tsmsxplem2 24097 abliso 33036 primrootsunit1 42115 gicabl 43090 2zrngaabl 48192 pgrpgt2nabl 48308 |
| Copyright terms: Public domain | W3C validator |