![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group." (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 18641 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | 1 | elin2 4099 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∈ wcel 2081 Grpcgrp 17866 CMndccmn 18638 Abelcabl 18639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-in 3870 df-abl 18641 |
This theorem is referenced by: ablgrp 18643 ablcmn 18644 isabl2 18646 ablpropd 18648 isabld 18651 ghmabl 18683 prdsabld 18710 unitabl 19113 tsmsinv 22444 tgptsmscls 22446 tsmsxplem1 22449 tsmsxplem2 22450 abliso 30362 cntrabl 30514 gicabl 39209 2zrngaabl 43719 pgrpgt2nabl 43920 |
Copyright terms: Public domain | W3C validator |