Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isabl | Structured version Visualization version GIF version |
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abl 19370 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
2 | 1 | elin2 4135 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18558 CMndccmn 19367 Abelcabl 19368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-abl 19370 |
This theorem is referenced by: ablgrp 19372 ablcmn 19374 isabl2 19376 ablpropd 19378 isabld 19381 ghmabl 19415 cntrabl 19425 prdsabld 19444 unitabl 19891 tsmsinv 23280 tgptsmscls 23282 tsmsxplem1 23285 tsmsxplem2 23286 abliso 31284 gicabl 40904 2zrngaabl 45454 pgrpgt2nabl 45654 |
Copyright terms: Public domain | W3C validator |