Detailed syntax breakdown of Definition df-abv
Step | Hyp | Ref
| Expression |
1 | | cabv 19991 |
. 2
class
AbsVal |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | crg 19698 |
. . 3
class
Ring |
4 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
6 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
8 | 5, 7 | cfv 6418 |
. . . . . . . 8
class (𝑓‘𝑥) |
9 | | cc0 10802 |
. . . . . . . 8
class
0 |
10 | 8, 9 | wceq 1539 |
. . . . . . 7
wff (𝑓‘𝑥) = 0 |
11 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑟 |
12 | | c0g 17067 |
. . . . . . . . 9
class
0g |
13 | 11, 12 | cfv 6418 |
. . . . . . . 8
class
(0g‘𝑟) |
14 | 5, 13 | wceq 1539 |
. . . . . . 7
wff 𝑥 = (0g‘𝑟) |
15 | 10, 14 | wb 205 |
. . . . . 6
wff ((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) |
16 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
17 | 16 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
18 | | cmulr 16889 |
. . . . . . . . . . . 12
class
.r |
19 | 11, 18 | cfv 6418 |
. . . . . . . . . . 11
class
(.r‘𝑟) |
20 | 5, 17, 19 | co 7255 |
. . . . . . . . . 10
class (𝑥(.r‘𝑟)𝑦) |
21 | 20, 7 | cfv 6418 |
. . . . . . . . 9
class (𝑓‘(𝑥(.r‘𝑟)𝑦)) |
22 | 17, 7 | cfv 6418 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
23 | | cmul 10807 |
. . . . . . . . . 10
class
· |
24 | 8, 22, 23 | co 7255 |
. . . . . . . . 9
class ((𝑓‘𝑥) · (𝑓‘𝑦)) |
25 | 21, 24 | wceq 1539 |
. . . . . . . 8
wff (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) |
26 | | cplusg 16888 |
. . . . . . . . . . . 12
class
+g |
27 | 11, 26 | cfv 6418 |
. . . . . . . . . . 11
class
(+g‘𝑟) |
28 | 5, 17, 27 | co 7255 |
. . . . . . . . . 10
class (𝑥(+g‘𝑟)𝑦) |
29 | 28, 7 | cfv 6418 |
. . . . . . . . 9
class (𝑓‘(𝑥(+g‘𝑟)𝑦)) |
30 | | caddc 10805 |
. . . . . . . . . 10
class
+ |
31 | 8, 22, 30 | co 7255 |
. . . . . . . . 9
class ((𝑓‘𝑥) + (𝑓‘𝑦)) |
32 | | cle 10941 |
. . . . . . . . 9
class
≤ |
33 | 29, 31, 32 | wbr 5070 |
. . . . . . . 8
wff (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)) |
34 | 25, 33 | wa 395 |
. . . . . . 7
wff ((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) |
35 | | cbs 16840 |
. . . . . . . 8
class
Base |
36 | 11, 35 | cfv 6418 |
. . . . . . 7
class
(Base‘𝑟) |
37 | 34, 16, 36 | wral 3063 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) |
38 | 15, 37 | wa 395 |
. . . . 5
wff (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) |
39 | 38, 4, 36 | wral 3063 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) |
40 | | cpnf 10937 |
. . . . . 6
class
+∞ |
41 | | cico 13010 |
. . . . . 6
class
[,) |
42 | 9, 40, 41 | co 7255 |
. . . . 5
class
(0[,)+∞) |
43 | | cmap 8573 |
. . . . 5
class
↑m |
44 | 42, 36, 43 | co 7255 |
. . . 4
class
((0[,)+∞) ↑m (Base‘𝑟)) |
45 | 39, 6, 44 | crab 3067 |
. . 3
class {𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} |
46 | 2, 3, 45 | cmpt 5153 |
. 2
class (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |
47 | 1, 46 | wceq 1539 |
1
wff AbsVal =
(𝑟 ∈ Ring ↦
{𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |