Detailed syntax breakdown of Definition df-abv
| Step | Hyp | Ref
| Expression |
| 1 | | cabv 20809 |
. 2
class
AbsVal |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | crg 20230 |
. . 3
class
Ring |
| 4 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 6 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 8 | 5, 7 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑥) |
| 9 | | cc0 11155 |
. . . . . . . 8
class
0 |
| 10 | 8, 9 | wceq 1540 |
. . . . . . 7
wff (𝑓‘𝑥) = 0 |
| 11 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑟 |
| 12 | | c0g 17484 |
. . . . . . . . 9
class
0g |
| 13 | 11, 12 | cfv 6561 |
. . . . . . . 8
class
(0g‘𝑟) |
| 14 | 5, 13 | wceq 1540 |
. . . . . . 7
wff 𝑥 = (0g‘𝑟) |
| 15 | 10, 14 | wb 206 |
. . . . . 6
wff ((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) |
| 16 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 17 | 16 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 18 | | cmulr 17298 |
. . . . . . . . . . . 12
class
.r |
| 19 | 11, 18 | cfv 6561 |
. . . . . . . . . . 11
class
(.r‘𝑟) |
| 20 | 5, 17, 19 | co 7431 |
. . . . . . . . . 10
class (𝑥(.r‘𝑟)𝑦) |
| 21 | 20, 7 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘(𝑥(.r‘𝑟)𝑦)) |
| 22 | 17, 7 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
| 23 | | cmul 11160 |
. . . . . . . . . 10
class
· |
| 24 | 8, 22, 23 | co 7431 |
. . . . . . . . 9
class ((𝑓‘𝑥) · (𝑓‘𝑦)) |
| 25 | 21, 24 | wceq 1540 |
. . . . . . . 8
wff (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) |
| 26 | | cplusg 17297 |
. . . . . . . . . . . 12
class
+g |
| 27 | 11, 26 | cfv 6561 |
. . . . . . . . . . 11
class
(+g‘𝑟) |
| 28 | 5, 17, 27 | co 7431 |
. . . . . . . . . 10
class (𝑥(+g‘𝑟)𝑦) |
| 29 | 28, 7 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘(𝑥(+g‘𝑟)𝑦)) |
| 30 | | caddc 11158 |
. . . . . . . . . 10
class
+ |
| 31 | 8, 22, 30 | co 7431 |
. . . . . . . . 9
class ((𝑓‘𝑥) + (𝑓‘𝑦)) |
| 32 | | cle 11296 |
. . . . . . . . 9
class
≤ |
| 33 | 29, 31, 32 | wbr 5143 |
. . . . . . . 8
wff (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)) |
| 34 | 25, 33 | wa 395 |
. . . . . . 7
wff ((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) |
| 35 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 36 | 11, 35 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑟) |
| 37 | 34, 16, 36 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) |
| 38 | 15, 37 | wa 395 |
. . . . 5
wff (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) |
| 39 | 38, 4, 36 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) |
| 40 | | cpnf 11292 |
. . . . . 6
class
+∞ |
| 41 | | cico 13389 |
. . . . . 6
class
[,) |
| 42 | 9, 40, 41 | co 7431 |
. . . . 5
class
(0[,)+∞) |
| 43 | | cmap 8866 |
. . . . 5
class
↑m |
| 44 | 42, 36, 43 | co 7431 |
. . . 4
class
((0[,)+∞) ↑m (Base‘𝑟)) |
| 45 | 39, 6, 44 | crab 3436 |
. . 3
class {𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} |
| 46 | 2, 3, 45 | cmpt 5225 |
. 2
class (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |
| 47 | 1, 46 | wceq 1540 |
1
wff AbsVal =
(𝑟 ∈ Ring ↦
{𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |