| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| Ref | Expression |
|---|---|
| abvrcl | ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abv 20725 | . . 3 ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | |
| 2 | 1 | mptrcl 6980 | . 2 ⊢ (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
| 3 | abvf.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 4 | 2, 3 | eleq2s 2847 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 0cc0 11075 + caddc 11078 · cmul 11080 +∞cpnf 11212 ≤ cle 11216 [,)cico 13315 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 Ringcrg 20149 AbsValcabv 20724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 df-abv 20725 |
| This theorem is referenced by: abvfge0 20730 abveq0 20734 abvmul 20737 abvtri 20738 abv0 20739 abv1z 20740 abvneg 20742 abvsubtri 20743 abvpropd 20751 abvmet 24470 nrgring 24558 tngnrg 24569 abvcxp 27533 |
| Copyright terms: Public domain | W3C validator |