MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrcl Structured version   Visualization version   GIF version

Theorem abvrcl 20713
Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
abvrcl (𝐹𝐴𝑅 ∈ Ring)

Proof of Theorem abvrcl
Dummy variables 𝑥 𝑦 𝑓 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-abv 20709 . . 3 AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
21mptrcl 7013 . 2 (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
3 abvf.a . 2 𝐴 = (AbsVal‘𝑅)
42, 3eleq2s 2843 1 (𝐹𝐴𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418   class class class wbr 5149  cfv 6549  (class class class)co 7419  m cmap 8845  0cc0 11140   + caddc 11143   · cmul 11145  +∞cpnf 11277  cle 11281  [,)cico 13361  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  0gc0g 17424  Ringcrg 20185  AbsValcabv 20708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fv 6557  df-abv 20709
This theorem is referenced by:  abvfge0  20714  abveq0  20718  abvmul  20721  abvtri  20722  abv0  20723  abv1z  20724  abvneg  20726  abvsubtri  20727  abvpropd  20734  abvmet  24528  nrgring  24624  tngnrg  24635  abvcxp  27593
  Copyright terms: Public domain W3C validator