Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvrcl | ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abv 19992 | . . 3 ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | |
2 | 1 | mptrcl 6866 | . 2 ⊢ (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
3 | abvf.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑅) | |
4 | 2, 3 | eleq2s 2857 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 + caddc 10805 · cmul 10807 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Ringcrg 19698 AbsValcabv 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-abv 19992 |
This theorem is referenced by: abvfge0 19997 abveq0 20001 abvmul 20004 abvtri 20005 abv0 20006 abv1z 20007 abvneg 20009 abvsubtri 20010 abvpropd 20017 abvmet 23637 nrgring 23733 tngnrg 23744 abvcxp 26668 |
Copyright terms: Public domain | W3C validator |