| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| Ref | Expression |
|---|---|
| abvrcl | ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abv 20733 | . . 3 ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | |
| 2 | 1 | mptrcl 6947 | . 2 ⊢ (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
| 3 | abvf.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 4 | 2, 3 | eleq2s 2851 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 0cc0 11017 + caddc 11020 · cmul 11022 +∞cpnf 11154 ≤ cle 11158 [,)cico 13254 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 0gc0g 17350 Ringcrg 20159 AbsValcabv 20732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fv 6497 df-abv 20733 |
| This theorem is referenced by: abvfge0 20738 abveq0 20742 abvmul 20745 abvtri 20746 abv0 20747 abv1z 20748 abvneg 20750 abvsubtri 20751 abvpropd 20759 abvmet 24510 nrgring 24598 tngnrg 24609 abvcxp 27573 |
| Copyright terms: Public domain | W3C validator |