Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvrcl | ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abv 20087 | . . 3 ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | |
2 | 1 | mptrcl 6876 | . 2 ⊢ (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
3 | abvf.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑅) | |
4 | 2, 3 | eleq2s 2857 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 ↑m cmap 8602 0cc0 10881 + caddc 10884 · cmul 10886 +∞cpnf 11016 ≤ cle 11020 [,)cico 13091 Basecbs 16922 +gcplusg 16972 .rcmulr 16973 0gc0g 17160 Ringcrg 19793 AbsValcabv 20086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-xp 5590 df-rel 5591 df-cnv 5592 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fv 6434 df-abv 20087 |
This theorem is referenced by: abvfge0 20092 abveq0 20096 abvmul 20099 abvtri 20100 abv0 20101 abv1z 20102 abvneg 20104 abvsubtri 20105 abvpropd 20112 abvmet 23741 nrgring 23837 tngnrg 23848 abvcxp 26773 |
Copyright terms: Public domain | W3C validator |