MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrcl Structured version   Visualization version   GIF version

Theorem abvrcl 19996
Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
abvrcl (𝐹𝐴𝑅 ∈ Ring)

Proof of Theorem abvrcl
Dummy variables 𝑥 𝑦 𝑓 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-abv 19992 . . 3 AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
21mptrcl 6866 . 2 (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
3 abvf.a . 2 𝐴 = (AbsVal‘𝑅)
42, 3eleq2s 2857 1 (𝐹𝐴𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802   + caddc 10805   · cmul 10807  +∞cpnf 10937  cle 10941  [,)cico 13010  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Ringcrg 19698  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-abv 19992
This theorem is referenced by:  abvfge0  19997  abveq0  20001  abvmul  20004  abvtri  20005  abv0  20006  abv1z  20007  abvneg  20009  abvsubtri  20010  abvpropd  20017  abvmet  23637  nrgring  23733  tngnrg  23744  abvcxp  26668
  Copyright terms: Public domain W3C validator