MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrcl Structured version   Visualization version   GIF version

Theorem abvrcl 20722
Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
abvrcl (𝐹𝐴𝑅 ∈ Ring)

Proof of Theorem abvrcl
Dummy variables 𝑥 𝑦 𝑓 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-abv 20718 . . 3 AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
21mptrcl 6977 . 2 (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring)
3 abvf.a . 2 𝐴 = (AbsVal‘𝑅)
42, 3eleq2s 2846 1 (𝐹𝐴𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068   + caddc 11071   · cmul 11073  +∞cpnf 11205  cle 11209  [,)cico 13308  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Ringcrg 20142  AbsValcabv 20717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-abv 20718
This theorem is referenced by:  abvfge0  20723  abveq0  20727  abvmul  20730  abvtri  20731  abv0  20732  abv1z  20733  abvneg  20735  abvsubtri  20736  abvpropd  20744  abvmet  24463  nrgring  24551  tngnrg  24562  abvcxp  27526
  Copyright terms: Public domain W3C validator