![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvrcl | ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abv 20832 | . . 3 ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | |
2 | 1 | mptrcl 7038 | . 2 ⊢ (𝐹 ∈ (AbsVal‘𝑅) → 𝑅 ∈ Ring) |
3 | abvf.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑅) | |
4 | 2, 3 | eleq2s 2862 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 0cc0 11184 + caddc 11187 · cmul 11189 +∞cpnf 11321 ≤ cle 11325 [,)cico 13409 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 Ringcrg 20260 AbsValcabv 20831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-abv 20832 |
This theorem is referenced by: abvfge0 20837 abveq0 20841 abvmul 20844 abvtri 20845 abv0 20846 abv1z 20847 abvneg 20849 abvsubtri 20850 abvpropd 20858 abvmet 24609 nrgring 24705 tngnrg 24716 abvcxp 27677 |
Copyright terms: Public domain | W3C validator |