MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvfval Structured version   Visualization version   GIF version

Theorem abvfval 19701
Description: Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvfval.a 𝐴 = (AbsVal‘𝑅)
abvfval.b 𝐵 = (Base‘𝑅)
abvfval.p + = (+g𝑅)
abvfval.t · = (.r𝑅)
abvfval.z 0 = (0g𝑅)
Assertion
Ref Expression
abvfval (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   + ,𝑓   𝑅,𝑓,𝑥,𝑦   · ,𝑓   0 ,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)   + (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem abvfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 abvfval.a . 2 𝐴 = (AbsVal‘𝑅)
2 fveq2 6668 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 abvfval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2791 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54oveq2d 7180 . . . 4 (𝑟 = 𝑅 → ((0[,)+∞) ↑m (Base‘𝑟)) = ((0[,)+∞) ↑m 𝐵))
6 fveq2 6668 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 abvfval.z . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2791 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98eqeq2d 2749 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
109bibi2d 346 . . . . . 6 (𝑟 = 𝑅 → (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ↔ ((𝑓𝑥) = 0 ↔ 𝑥 = 0 )))
11 fveq2 6668 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
12 abvfval.t . . . . . . . . . . 11 · = (.r𝑅)
1311, 12eqtr4di 2791 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1413oveqd 7181 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
1514fveqeq2d 6676 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦))))
16 fveq2 6668 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
17 abvfval.p . . . . . . . . . . . 12 + = (+g𝑅)
1816, 17eqtr4di 2791 . . . . . . . . . . 11 (𝑟 = 𝑅 → (+g𝑟) = + )
1918oveqd 7181 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
2019fveq2d 6672 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑓‘(𝑥(+g𝑟)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
2120breq1d 5037 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))
2215, 21anbi12d 634 . . . . . . 7 (𝑟 = 𝑅 → (((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
234, 22raleqbidv 3303 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2410, 23anbi12d 634 . . . . 5 (𝑟 = 𝑅 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
254, 24raleqbidv 3303 . . . 4 (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
265, 25rabeqbidv 3386 . . 3 (𝑟 = 𝑅 → {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))} = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
27 df-abv 19700 . . 3 AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
28 ovex 7197 . . . 4 ((0[,)+∞) ↑m 𝐵) ∈ V
2928rabex 5197 . . 3 {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))} ∈ V
3026, 27, 29fvmpt 6769 . 2 (𝑅 ∈ Ring → (AbsVal‘𝑅) = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
311, 30syl5eq 2785 1 (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  {crab 3057   class class class wbr 5027  cfv 6333  (class class class)co 7164  m cmap 8430  0cc0 10608   + caddc 10611   · cmul 10613  +∞cpnf 10743  cle 10747  [,)cico 12816  Basecbs 16579  +gcplusg 16661  .rcmulr 16662  0gc0g 16809  Ringcrg 19409  AbsValcabv 19699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6291  df-fun 6335  df-fv 6341  df-ov 7167  df-abv 19700
This theorem is referenced by:  isabv  19702
  Copyright terms: Public domain W3C validator