| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | abvfval.a | . 2
⊢ 𝐴 = (AbsVal‘𝑅) | 
| 2 |  | fveq2 6905 | . . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | 
| 3 |  | abvfval.b | . . . . . 6
⊢ 𝐵 = (Base‘𝑅) | 
| 4 | 2, 3 | eqtr4di 2794 | . . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) | 
| 5 | 4 | oveq2d 7448 | . . . 4
⊢ (𝑟 = 𝑅 → ((0[,)+∞) ↑m
(Base‘𝑟)) =
((0[,)+∞) ↑m 𝐵)) | 
| 6 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | 
| 7 |  | abvfval.z | . . . . . . . . 9
⊢  0 =
(0g‘𝑅) | 
| 8 | 6, 7 | eqtr4di 2794 | . . . . . . . 8
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) | 
| 9 | 8 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑥 = (0g‘𝑟) ↔ 𝑥 = 0 )) | 
| 10 | 9 | bibi2d 342 | . . . . . 6
⊢ (𝑟 = 𝑅 → (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ↔ ((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ))) | 
| 11 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | 
| 12 |  | abvfval.t | . . . . . . . . . . 11
⊢  · =
(.r‘𝑅) | 
| 13 | 11, 12 | eqtr4di 2794 | . . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) | 
| 14 | 13 | oveqd 7449 | . . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) | 
| 15 | 14 | fveqeq2d 6913 | . . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)))) | 
| 16 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) | 
| 17 |  | abvfval.p | . . . . . . . . . . . 12
⊢  + =
(+g‘𝑅) | 
| 18 | 16, 17 | eqtr4di 2794 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = + ) | 
| 19 | 18 | oveqd 7449 | . . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥(+g‘𝑟)𝑦) = (𝑥 + 𝑦)) | 
| 20 | 19 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑓‘(𝑥(+g‘𝑟)𝑦)) = (𝑓‘(𝑥 + 𝑦))) | 
| 21 | 20 | breq1d 5152 | . . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) | 
| 22 | 15, 21 | anbi12d 632 | . . . . . . 7
⊢ (𝑟 = 𝑅 → (((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) | 
| 23 | 4, 22 | raleqbidv 3345 | . . . . . 6
⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) | 
| 24 | 10, 23 | anbi12d 632 | . . . . 5
⊢ (𝑟 = 𝑅 → ((((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) | 
| 25 | 4, 24 | raleqbidv 3345 | . . . 4
⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) | 
| 26 | 5, 25 | rabeqbidv 3454 | . . 3
⊢ (𝑟 = 𝑅 → {𝑓 ∈ ((0[,)+∞) ↑m
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} = {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | 
| 27 |  | df-abv 20811 | . . 3
⊢ AbsVal =
(𝑟 ∈ Ring ↦
{𝑓 ∈ ((0[,)+∞)
↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | 
| 28 |  | ovex 7465 | . . . 4
⊢
((0[,)+∞) ↑m 𝐵) ∈ V | 
| 29 | 28 | rabex 5338 | . . 3
⊢ {𝑓 ∈ ((0[,)+∞)
↑m 𝐵)
∣ ∀𝑥 ∈
𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))} ∈ V | 
| 30 | 26, 27, 29 | fvmpt 7015 | . 2
⊢ (𝑅 ∈ Ring →
(AbsVal‘𝑅) = {𝑓 ∈ ((0[,)+∞)
↑m 𝐵)
∣ ∀𝑥 ∈
𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | 
| 31 | 1, 30 | eqtrid 2788 | 1
⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m
𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |