MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvfval Structured version   Visualization version   GIF version

Theorem abvfval 20123
Description: Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvfval.a 𝐴 = (AbsVal‘𝑅)
abvfval.b 𝐵 = (Base‘𝑅)
abvfval.p + = (+g𝑅)
abvfval.t · = (.r𝑅)
abvfval.z 0 = (0g𝑅)
Assertion
Ref Expression
abvfval (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   + ,𝑓   𝑅,𝑓,𝑥,𝑦   · ,𝑓   0 ,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)   + (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem abvfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 abvfval.a . 2 𝐴 = (AbsVal‘𝑅)
2 fveq2 6804 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 abvfval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2794 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54oveq2d 7323 . . . 4 (𝑟 = 𝑅 → ((0[,)+∞) ↑m (Base‘𝑟)) = ((0[,)+∞) ↑m 𝐵))
6 fveq2 6804 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 abvfval.z . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2794 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98eqeq2d 2747 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
109bibi2d 343 . . . . . 6 (𝑟 = 𝑅 → (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ↔ ((𝑓𝑥) = 0 ↔ 𝑥 = 0 )))
11 fveq2 6804 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
12 abvfval.t . . . . . . . . . . 11 · = (.r𝑅)
1311, 12eqtr4di 2794 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1413oveqd 7324 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
1514fveqeq2d 6812 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦))))
16 fveq2 6804 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
17 abvfval.p . . . . . . . . . . . 12 + = (+g𝑅)
1816, 17eqtr4di 2794 . . . . . . . . . . 11 (𝑟 = 𝑅 → (+g𝑟) = + )
1918oveqd 7324 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
2019fveq2d 6808 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑓‘(𝑥(+g𝑟)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
2120breq1d 5091 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))
2215, 21anbi12d 632 . . . . . . 7 (𝑟 = 𝑅 → (((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
234, 22raleqbidv 3348 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2410, 23anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
254, 24raleqbidv 3348 . . . 4 (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
265, 25rabeqbidv 3427 . . 3 (𝑟 = 𝑅 → {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))} = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
27 df-abv 20122 . . 3 AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
28 ovex 7340 . . . 4 ((0[,)+∞) ↑m 𝐵) ∈ V
2928rabex 5265 . . 3 {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))} ∈ V
3026, 27, 29fvmpt 6907 . 2 (𝑅 ∈ Ring → (AbsVal‘𝑅) = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
311, 30eqtrid 2788 1 (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  {crab 3284   class class class wbr 5081  cfv 6458  (class class class)co 7307  m cmap 8646  0cc0 10917   + caddc 10920   · cmul 10922  +∞cpnf 11052  cle 11056  [,)cico 13127  Basecbs 16957  +gcplusg 17007  .rcmulr 17008  0gc0g 17195  Ringcrg 19828  AbsValcabv 20121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-abv 20122
This theorem is referenced by:  isabv  20124
  Copyright terms: Public domain W3C validator