MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvfval Structured version   Visualization version   GIF version

Theorem abvfval 20833
Description: Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvfval.a 𝐴 = (AbsVal‘𝑅)
abvfval.b 𝐵 = (Base‘𝑅)
abvfval.p + = (+g𝑅)
abvfval.t · = (.r𝑅)
abvfval.z 0 = (0g𝑅)
Assertion
Ref Expression
abvfval (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   + ,𝑓   𝑅,𝑓,𝑥,𝑦   · ,𝑓   0 ,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)   + (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem abvfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 abvfval.a . 2 𝐴 = (AbsVal‘𝑅)
2 fveq2 6920 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 abvfval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2798 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54oveq2d 7464 . . . 4 (𝑟 = 𝑅 → ((0[,)+∞) ↑m (Base‘𝑟)) = ((0[,)+∞) ↑m 𝐵))
6 fveq2 6920 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 abvfval.z . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2798 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98eqeq2d 2751 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
109bibi2d 342 . . . . . 6 (𝑟 = 𝑅 → (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ↔ ((𝑓𝑥) = 0 ↔ 𝑥 = 0 )))
11 fveq2 6920 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
12 abvfval.t . . . . . . . . . . 11 · = (.r𝑅)
1311, 12eqtr4di 2798 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1413oveqd 7465 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
1514fveqeq2d 6928 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦))))
16 fveq2 6920 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
17 abvfval.p . . . . . . . . . . . 12 + = (+g𝑅)
1816, 17eqtr4di 2798 . . . . . . . . . . 11 (𝑟 = 𝑅 → (+g𝑟) = + )
1918oveqd 7465 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
2019fveq2d 6924 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑓‘(𝑥(+g𝑟)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
2120breq1d 5176 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))
2215, 21anbi12d 631 . . . . . . 7 (𝑟 = 𝑅 → (((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
234, 22raleqbidv 3354 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2410, 23anbi12d 631 . . . . 5 (𝑟 = 𝑅 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
254, 24raleqbidv 3354 . . . 4 (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
265, 25rabeqbidv 3462 . . 3 (𝑟 = 𝑅 → {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))} = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
27 df-abv 20832 . . 3 AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
28 ovex 7481 . . . 4 ((0[,)+∞) ↑m 𝐵) ∈ V
2928rabex 5357 . . 3 {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))} ∈ V
3026, 27, 29fvmpt 7029 . 2 (𝑅 ∈ Ring → (AbsVal‘𝑅) = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
311, 30eqtrid 2792 1 (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184   + caddc 11187   · cmul 11189  +∞cpnf 11321  cle 11325  [,)cico 13409  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Ringcrg 20260  AbsValcabv 20831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-abv 20832
This theorem is referenced by:  isabv  20834
  Copyright terms: Public domain W3C validator