MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-abs Structured version   Visualization version   GIF version

Definition df-abs 15253
Description: Define the function for the absolute value (modulus) of a complex number. See abscli 15412 for its closure and absval 15255 or absval2i 15414 for its value. For example, (abs‘-2) = 2 (ex-abs 30382). (Contributed by NM, 27-Jul-1999.)
Assertion
Ref Expression
df-abs abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))

Detailed syntax breakdown of Definition df-abs
StepHypRef Expression
1 cabs 15251 . 2 class abs
2 vx . . 3 setvar 𝑥
3 cc 11125 . . 3 class
42cv 1539 . . . . 5 class 𝑥
5 ccj 15113 . . . . . 6 class
64, 5cfv 6530 . . . . 5 class (∗‘𝑥)
7 cmul 11132 . . . . 5 class ·
84, 6, 7co 7403 . . . 4 class (𝑥 · (∗‘𝑥))
9 csqrt 15250 . . . 4 class
108, 9cfv 6530 . . 3 class (√‘(𝑥 · (∗‘𝑥)))
112, 3, 10cmpt 5201 . 2 class (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
121, 11wceq 1540 1 wff abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
Colors of variables: wff setvar class
This definition is referenced by:  absval  15255  absf  15354  absfico  45190
  Copyright terms: Public domain W3C validator