MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-abs Structured version   Visualization version   GIF version

Definition df-abs 15145
Description: Define the function for the absolute value (modulus) of a complex number. See abscli 15305 for its closure and absval 15147 or absval2i 15307 for its value. For example, (abs‘-2) = 2 (ex-abs 30437). (Contributed by NM, 27-Jul-1999.)
Assertion
Ref Expression
df-abs abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))

Detailed syntax breakdown of Definition df-abs
StepHypRef Expression
1 cabs 15143 . 2 class abs
2 vx . . 3 setvar 𝑥
3 cc 11011 . . 3 class
42cv 1540 . . . . 5 class 𝑥
5 ccj 15005 . . . . . 6 class
64, 5cfv 6486 . . . . 5 class (∗‘𝑥)
7 cmul 11018 . . . . 5 class ·
84, 6, 7co 7352 . . . 4 class (𝑥 · (∗‘𝑥))
9 csqrt 15142 . . . 4 class
108, 9cfv 6486 . . 3 class (√‘(𝑥 · (∗‘𝑥)))
112, 3, 10cmpt 5174 . 2 class (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
121, 11wceq 1541 1 wff abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
Colors of variables: wff setvar class
This definition is referenced by:  absval  15147  absf  15247  absfico  45339
  Copyright terms: Public domain W3C validator