![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval0 | Structured version Visualization version GIF version |
Description: The Ackermann function at 0. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
ackval0 | ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ack 48394 | . . 3 ⊢ Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ (Ack‘0) = (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘0) |
3 | 0z 12650 | . . 3 ⊢ 0 ∈ ℤ | |
4 | seq1 14065 | . . 3 ⊢ (0 ∈ ℤ → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘0) = ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘0)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘0) = ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘0) |
6 | 0nn0 12568 | . . 3 ⊢ 0 ∈ ℕ0 | |
7 | iftrue 4554 | . . . 4 ⊢ (𝑖 = 0 → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1))) | |
8 | eqid 2740 | . . . 4 ⊢ (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)) | |
9 | nn0ex 12559 | . . . . 5 ⊢ ℕ0 ∈ V | |
10 | 9 | mptex 7260 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) ∈ V |
11 | 7, 8, 10 | fvmpt 7029 | . . 3 ⊢ (0 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1))) |
12 | 6, 11 | ax-mp 5 | . 2 ⊢ ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) |
13 | 2, 5, 12 | 3eqtri 2772 | 1 ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 0cc0 11184 1c1 11185 + caddc 11187 ℕ0cn0 12553 ℤcz 12639 seqcseq 14052 IterCompcitco 48391 Ackcack 48392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-ack 48394 |
This theorem is referenced by: ackval1 48415 ackendofnn0 48418 ackval0val 48420 ackval0012 48423 |
Copyright terms: Public domain | W3C validator |