![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval0 | Structured version Visualization version GIF version |
Description: The Ackermann function at 0. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
ackval0 | β’ (Ackβ0) = (π β β0 β¦ (π + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ack 47500 | . . 3 β’ Ack = seq0((π β V, π β V β¦ (π β β0 β¦ (((IterCompβπ)β(π + 1))β1))), (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π))) | |
2 | 1 | fveq1i 6882 | . 2 β’ (Ackβ0) = (seq0((π β V, π β V β¦ (π β β0 β¦ (((IterCompβπ)β(π + 1))β1))), (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π)))β0) |
3 | 0z 12565 | . . 3 β’ 0 β β€ | |
4 | seq1 13975 | . . 3 β’ (0 β β€ β (seq0((π β V, π β V β¦ (π β β0 β¦ (((IterCompβπ)β(π + 1))β1))), (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π)))β0) = ((π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π))β0)) | |
5 | 3, 4 | ax-mp 5 | . 2 β’ (seq0((π β V, π β V β¦ (π β β0 β¦ (((IterCompβπ)β(π + 1))β1))), (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π)))β0) = ((π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π))β0) |
6 | 0nn0 12483 | . . 3 β’ 0 β β0 | |
7 | iftrue 4526 | . . . 4 β’ (π = 0 β if(π = 0, (π β β0 β¦ (π + 1)), π) = (π β β0 β¦ (π + 1))) | |
8 | eqid 2724 | . . . 4 β’ (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π)) = (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π)) | |
9 | nn0ex 12474 | . . . . 5 β’ β0 β V | |
10 | 9 | mptex 7216 | . . . 4 β’ (π β β0 β¦ (π + 1)) β V |
11 | 7, 8, 10 | fvmpt 6988 | . . 3 β’ (0 β β0 β ((π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π))β0) = (π β β0 β¦ (π + 1))) |
12 | 6, 11 | ax-mp 5 | . 2 β’ ((π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π))β0) = (π β β0 β¦ (π + 1)) |
13 | 2, 5, 12 | 3eqtri 2756 | 1 β’ (Ackβ0) = (π β β0 β¦ (π + 1)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 Vcvv 3466 ifcif 4520 β¦ cmpt 5221 βcfv 6533 (class class class)co 7401 β cmpo 7403 0cc0 11105 1c1 11106 + caddc 11108 β0cn0 12468 β€cz 12554 seqcseq 13962 IterCompcitco 47497 Ackcack 47498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-ack 47500 |
This theorem is referenced by: ackval1 47521 ackendofnn0 47524 ackval0val 47526 ackval0012 47529 |
Copyright terms: Public domain | W3C validator |