Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsuc1mpt Structured version   Visualization version   GIF version

Theorem ackvalsuc1mpt 48528
Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.)
Assertion
Ref Expression
ackvalsuc1mpt (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Distinct variable group:   𝑛,𝑀

Proof of Theorem ackvalsuc1mpt
Dummy variables 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ack 48510 . . 3 Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
21fveq1i 6908 . 2 (Ack‘(𝑀 + 1)) = (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1))
3 nn0uz 12918 . . . 4 0 = (ℤ‘0)
4 id 22 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
5 eqid 2735 . . . 4 (𝑀 + 1) = (𝑀 + 1)
61eqcomi 2744 . . . . . 6 seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) = Ack
76fveq1i 6908 . . . . 5 (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀)
87a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀))
9 eqidd 2736 . . . . 5 (𝑀 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
10 nn0p1gt0 12553 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 < (𝑀 + 1))
1110gt0ne0d 11825 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 + 1) ≠ 0)
1211adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑀 + 1) ≠ 0)
13 neeq1 3001 . . . . . . . . . 10 (𝑖 = (𝑀 + 1) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1413adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1512, 14mpbird 257 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 ≠ 0)
1615neneqd 2943 . . . . . . 7 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → ¬ 𝑖 = 0)
1716iffalsed 4542 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = 𝑖)
18 simpr 484 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 = (𝑀 + 1))
1917, 18eqtrd 2775 . . . . 5 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = (𝑀 + 1))
20 peano2nn0 12564 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
219, 19, 20, 20fvmptd 7023 . . . 4 (𝑀 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘(𝑀 + 1)) = (𝑀 + 1))
223, 4, 5, 8, 21seqp1d 14056 . . 3 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)))
23 eqidd 2736 . . . 4 (𝑀 ∈ ℕ0 → (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))) = (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))))
24 fveq2 6907 . . . . . . . 8 (𝑓 = (Ack‘𝑀) → (IterComp‘𝑓) = (IterComp‘(Ack‘𝑀)))
2524fveq1d 6909 . . . . . . 7 (𝑓 = (Ack‘𝑀) → ((IterComp‘𝑓)‘(𝑛 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑛 + 1)))
2625fveq1d 6909 . . . . . 6 (𝑓 = (Ack‘𝑀) → (((IterComp‘𝑓)‘(𝑛 + 1))‘1) = (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))
2726mpteq2dv 5250 . . . . 5 (𝑓 = (Ack‘𝑀) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
2827ad2antrl 728 . . . 4 ((𝑀 ∈ ℕ0 ∧ (𝑓 = (Ack‘𝑀) ∧ 𝑗 = (𝑀 + 1))) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
29 fvexd 6922 . . . 4 (𝑀 ∈ ℕ0 → (Ack‘𝑀) ∈ V)
30 ovexd 7466 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ V)
31 nn0ex 12530 . . . . . 6 0 ∈ V
3231mptex 7243 . . . . 5 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V
3332a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V)
3423, 28, 29, 30, 33ovmpod 7585 . . 3 (𝑀 ∈ ℕ0 → ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
3522, 34eqtrd 2775 . 2 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
362, 35eqtrid 2787 1 (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  ifcif 4531  cmpt 5231  cfv 6563  (class class class)co 7431  cmpo 7433  0cc0 11153  1c1 11154   + caddc 11156  0cn0 12524  seqcseq 14039  IterCompcitco 48507  Ackcack 48508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-ack 48510
This theorem is referenced by:  ackvalsuc1  48529  ackval1  48531  ackval2  48532  ackval3  48533  ackendofnn0  48534
  Copyright terms: Public domain W3C validator