Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsuc1mpt Structured version   Visualization version   GIF version

Theorem ackvalsuc1mpt 46917
Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.)
Assertion
Ref Expression
ackvalsuc1mpt (𝑀 ∈ β„•0 β†’ (Ackβ€˜(𝑀 + 1)) = (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)))
Distinct variable group:   𝑛,𝑀

Proof of Theorem ackvalsuc1mpt
Dummy variables 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ack 46899 . . 3 Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))
21fveq1i 6863 . 2 (Ackβ€˜(𝑀 + 1)) = (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))β€˜(𝑀 + 1))
3 nn0uz 12829 . . . 4 β„•0 = (β„€β‰₯β€˜0)
4 id 22 . . . 4 (𝑀 ∈ β„•0 β†’ 𝑀 ∈ β„•0)
5 eqid 2731 . . . 4 (𝑀 + 1) = (𝑀 + 1)
61eqcomi 2740 . . . . . 6 seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖))) = Ack
76fveq1i 6863 . . . . 5 (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))β€˜π‘€) = (Ackβ€˜π‘€)
87a1i 11 . . . 4 (𝑀 ∈ β„•0 β†’ (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))β€˜π‘€) = (Ackβ€˜π‘€))
9 eqidd 2732 . . . . 5 (𝑀 ∈ β„•0 β†’ (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)) = (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))
10 nn0p1gt0 12466 . . . . . . . . . . 11 (𝑀 ∈ β„•0 β†’ 0 < (𝑀 + 1))
1110gt0ne0d 11743 . . . . . . . . . 10 (𝑀 ∈ β„•0 β†’ (𝑀 + 1) β‰  0)
1211adantr 481 . . . . . . . . 9 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ (𝑀 + 1) β‰  0)
13 neeq1 3002 . . . . . . . . . 10 (𝑖 = (𝑀 + 1) β†’ (𝑖 β‰  0 ↔ (𝑀 + 1) β‰  0))
1413adantl 482 . . . . . . . . 9 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ (𝑖 β‰  0 ↔ (𝑀 + 1) β‰  0))
1512, 14mpbird 256 . . . . . . . 8 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ 𝑖 β‰  0)
1615neneqd 2944 . . . . . . 7 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ Β¬ 𝑖 = 0)
1716iffalsed 4517 . . . . . 6 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖) = 𝑖)
18 simpr 485 . . . . . 6 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ 𝑖 = (𝑀 + 1))
1917, 18eqtrd 2771 . . . . 5 ((𝑀 ∈ β„•0 ∧ 𝑖 = (𝑀 + 1)) β†’ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖) = (𝑀 + 1))
20 peano2nn0 12477 . . . . 5 (𝑀 ∈ β„•0 β†’ (𝑀 + 1) ∈ β„•0)
219, 19, 20, 20fvmptd 6975 . . . 4 (𝑀 ∈ β„•0 β†’ ((𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖))β€˜(𝑀 + 1)) = (𝑀 + 1))
223, 4, 5, 8, 21seqp1d 13948 . . 3 (𝑀 ∈ β„•0 β†’ (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))β€˜(𝑀 + 1)) = ((Ackβ€˜π‘€)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1)))(𝑀 + 1)))
23 eqidd 2732 . . . 4 (𝑀 ∈ β„•0 β†’ (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))) = (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))))
24 fveq2 6862 . . . . . . . 8 (𝑓 = (Ackβ€˜π‘€) β†’ (IterCompβ€˜π‘“) = (IterCompβ€˜(Ackβ€˜π‘€)))
2524fveq1d 6864 . . . . . . 7 (𝑓 = (Ackβ€˜π‘€) β†’ ((IterCompβ€˜π‘“)β€˜(𝑛 + 1)) = ((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1)))
2625fveq1d 6864 . . . . . 6 (𝑓 = (Ackβ€˜π‘€) β†’ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1) = (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1))
2726mpteq2dv 5227 . . . . 5 (𝑓 = (Ackβ€˜π‘€) β†’ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1)) = (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)))
2827ad2antrl 726 . . . 4 ((𝑀 ∈ β„•0 ∧ (𝑓 = (Ackβ€˜π‘€) ∧ 𝑗 = (𝑀 + 1))) β†’ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1)) = (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)))
29 fvexd 6877 . . . 4 (𝑀 ∈ β„•0 β†’ (Ackβ€˜π‘€) ∈ V)
30 ovexd 7412 . . . 4 (𝑀 ∈ β„•0 β†’ (𝑀 + 1) ∈ V)
31 nn0ex 12443 . . . . . 6 β„•0 ∈ V
3231mptex 7193 . . . . 5 (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)) ∈ V
3332a1i 11 . . . 4 (𝑀 ∈ β„•0 β†’ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)) ∈ V)
3423, 28, 29, 30, 33ovmpod 7527 . . 3 (𝑀 ∈ β„•0 β†’ ((Ackβ€˜π‘€)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1)))(𝑀 + 1)) = (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)))
3522, 34eqtrd 2771 . 2 (𝑀 ∈ β„•0 β†’ (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))β€˜(𝑀 + 1)) = (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)))
362, 35eqtrid 2783 1 (𝑀 ∈ β„•0 β†’ (Ackβ€˜(𝑀 + 1)) = (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜(Ackβ€˜π‘€))β€˜(𝑛 + 1))β€˜1)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2939  Vcvv 3459  ifcif 4506   ↦ cmpt 5208  β€˜cfv 6516  (class class class)co 7377   ∈ cmpo 7379  0cc0 11075  1c1 11076   + caddc 11078  β„•0cn0 12437  seqcseq 13931  IterCompcitco 46896  Ackcack 46897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-om 7823  df-2nd 7942  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-rdg 8376  df-er 8670  df-en 8906  df-dom 8907  df-sdom 8908  df-pnf 11215  df-mnf 11216  df-xr 11217  df-ltxr 11218  df-le 11219  df-sub 11411  df-neg 11412  df-nn 12178  df-n0 12438  df-z 12524  df-uz 12788  df-seq 13932  df-ack 46899
This theorem is referenced by:  ackvalsuc1  46918  ackval1  46920  ackval2  46921  ackval3  46922  ackendofnn0  46923
  Copyright terms: Public domain W3C validator