Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsuc1mpt Structured version   Visualization version   GIF version

Theorem ackvalsuc1mpt 46002
Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.)
Assertion
Ref Expression
ackvalsuc1mpt (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Distinct variable group:   𝑛,𝑀

Proof of Theorem ackvalsuc1mpt
Dummy variables 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ack 45984 . . 3 Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
21fveq1i 6767 . 2 (Ack‘(𝑀 + 1)) = (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1))
3 nn0uz 12630 . . . 4 0 = (ℤ‘0)
4 id 22 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
5 eqid 2738 . . . 4 (𝑀 + 1) = (𝑀 + 1)
61eqcomi 2747 . . . . . 6 seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) = Ack
76fveq1i 6767 . . . . 5 (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀)
87a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀))
9 eqidd 2739 . . . . 5 (𝑀 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
10 nn0p1gt0 12272 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 < (𝑀 + 1))
1110gt0ne0d 11549 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 + 1) ≠ 0)
1211adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑀 + 1) ≠ 0)
13 neeq1 3006 . . . . . . . . . 10 (𝑖 = (𝑀 + 1) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1413adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1512, 14mpbird 256 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 ≠ 0)
1615neneqd 2948 . . . . . . 7 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → ¬ 𝑖 = 0)
1716iffalsed 4470 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = 𝑖)
18 simpr 485 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 = (𝑀 + 1))
1917, 18eqtrd 2778 . . . . 5 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = (𝑀 + 1))
20 peano2nn0 12283 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
219, 19, 20, 20fvmptd 6874 . . . 4 (𝑀 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘(𝑀 + 1)) = (𝑀 + 1))
223, 4, 5, 8, 21seqp1d 13748 . . 3 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)))
23 eqidd 2739 . . . 4 (𝑀 ∈ ℕ0 → (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))) = (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))))
24 fveq2 6766 . . . . . . . 8 (𝑓 = (Ack‘𝑀) → (IterComp‘𝑓) = (IterComp‘(Ack‘𝑀)))
2524fveq1d 6768 . . . . . . 7 (𝑓 = (Ack‘𝑀) → ((IterComp‘𝑓)‘(𝑛 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑛 + 1)))
2625fveq1d 6768 . . . . . 6 (𝑓 = (Ack‘𝑀) → (((IterComp‘𝑓)‘(𝑛 + 1))‘1) = (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))
2726mpteq2dv 5175 . . . . 5 (𝑓 = (Ack‘𝑀) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
2827ad2antrl 725 . . . 4 ((𝑀 ∈ ℕ0 ∧ (𝑓 = (Ack‘𝑀) ∧ 𝑗 = (𝑀 + 1))) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
29 fvexd 6781 . . . 4 (𝑀 ∈ ℕ0 → (Ack‘𝑀) ∈ V)
30 ovexd 7302 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ V)
31 nn0ex 12249 . . . . . 6 0 ∈ V
3231mptex 7091 . . . . 5 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V
3332a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V)
3423, 28, 29, 30, 33ovmpod 7415 . . 3 (𝑀 ∈ ℕ0 → ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
3522, 34eqtrd 2778 . 2 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
362, 35eqtrid 2790 1 (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3429  ifcif 4459  cmpt 5156  cfv 6426  (class class class)co 7267  cmpo 7269  0cc0 10881  1c1 10882   + caddc 10884  0cn0 12243  seqcseq 13731  IterCompcitco 45981  Ackcack 45982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-n0 12244  df-z 12330  df-uz 12593  df-seq 13732  df-ack 45984
This theorem is referenced by:  ackvalsuc1  46003  ackval1  46005  ackval2  46006  ackval3  46007  ackendofnn0  46008
  Copyright terms: Public domain W3C validator