Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsuc1mpt Structured version   Visualization version   GIF version

Theorem ackvalsuc1mpt 46754
Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.)
Assertion
Ref Expression
ackvalsuc1mpt (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Distinct variable group:   𝑛,𝑀

Proof of Theorem ackvalsuc1mpt
Dummy variables 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ack 46736 . . 3 Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
21fveq1i 6843 . 2 (Ack‘(𝑀 + 1)) = (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1))
3 nn0uz 12805 . . . 4 0 = (ℤ‘0)
4 id 22 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
5 eqid 2736 . . . 4 (𝑀 + 1) = (𝑀 + 1)
61eqcomi 2745 . . . . . 6 seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) = Ack
76fveq1i 6843 . . . . 5 (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀)
87a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀))
9 eqidd 2737 . . . . 5 (𝑀 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
10 nn0p1gt0 12442 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 < (𝑀 + 1))
1110gt0ne0d 11719 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 + 1) ≠ 0)
1211adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑀 + 1) ≠ 0)
13 neeq1 3006 . . . . . . . . . 10 (𝑖 = (𝑀 + 1) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1413adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1512, 14mpbird 256 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 ≠ 0)
1615neneqd 2948 . . . . . . 7 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → ¬ 𝑖 = 0)
1716iffalsed 4497 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = 𝑖)
18 simpr 485 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 = (𝑀 + 1))
1917, 18eqtrd 2776 . . . . 5 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = (𝑀 + 1))
20 peano2nn0 12453 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
219, 19, 20, 20fvmptd 6955 . . . 4 (𝑀 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘(𝑀 + 1)) = (𝑀 + 1))
223, 4, 5, 8, 21seqp1d 13923 . . 3 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)))
23 eqidd 2737 . . . 4 (𝑀 ∈ ℕ0 → (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))) = (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))))
24 fveq2 6842 . . . . . . . 8 (𝑓 = (Ack‘𝑀) → (IterComp‘𝑓) = (IterComp‘(Ack‘𝑀)))
2524fveq1d 6844 . . . . . . 7 (𝑓 = (Ack‘𝑀) → ((IterComp‘𝑓)‘(𝑛 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑛 + 1)))
2625fveq1d 6844 . . . . . 6 (𝑓 = (Ack‘𝑀) → (((IterComp‘𝑓)‘(𝑛 + 1))‘1) = (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))
2726mpteq2dv 5207 . . . . 5 (𝑓 = (Ack‘𝑀) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
2827ad2antrl 726 . . . 4 ((𝑀 ∈ ℕ0 ∧ (𝑓 = (Ack‘𝑀) ∧ 𝑗 = (𝑀 + 1))) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
29 fvexd 6857 . . . 4 (𝑀 ∈ ℕ0 → (Ack‘𝑀) ∈ V)
30 ovexd 7392 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ V)
31 nn0ex 12419 . . . . . 6 0 ∈ V
3231mptex 7173 . . . . 5 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V
3332a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V)
3423, 28, 29, 30, 33ovmpod 7507 . . 3 (𝑀 ∈ ℕ0 → ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
3522, 34eqtrd 2776 . 2 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
362, 35eqtrid 2788 1 (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  ifcif 4486  cmpt 5188  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052   + caddc 11054  0cn0 12413  seqcseq 13906  IterCompcitco 46733  Ackcack 46734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-ack 46736
This theorem is referenced by:  ackvalsuc1  46755  ackval1  46757  ackval2  46758  ackval3  46759  ackendofnn0  46760
  Copyright terms: Public domain W3C validator