Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsuc1mpt Structured version   Visualization version   GIF version

Theorem ackvalsuc1mpt 45079
 Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.)
Assertion
Ref Expression
ackvalsuc1mpt (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
Distinct variable group:   𝑛,𝑀

Proof of Theorem ackvalsuc1mpt
Dummy variables 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ack 45061 . . 3 Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
21fveq1i 6650 . 2 (Ack‘(𝑀 + 1)) = (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1))
3 nn0uz 12272 . . . 4 0 = (ℤ‘0)
4 id 22 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
5 eqid 2801 . . . 4 (𝑀 + 1) = (𝑀 + 1)
61eqcomi 2810 . . . . . 6 seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) = Ack
76fveq1i 6650 . . . . 5 (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀)
87a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘𝑀) = (Ack‘𝑀))
9 eqidd 2802 . . . . 5 (𝑀 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
10 nn0p1gt0 11918 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 < (𝑀 + 1))
1110gt0ne0d 11197 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 + 1) ≠ 0)
1211adantr 484 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑀 + 1) ≠ 0)
13 neeq1 3052 . . . . . . . . . 10 (𝑖 = (𝑀 + 1) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1413adantl 485 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → (𝑖 ≠ 0 ↔ (𝑀 + 1) ≠ 0))
1512, 14mpbird 260 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 ≠ 0)
1615neneqd 2995 . . . . . . 7 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → ¬ 𝑖 = 0)
1716iffalsed 4439 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = 𝑖)
18 simpr 488 . . . . . 6 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → 𝑖 = (𝑀 + 1))
1917, 18eqtrd 2836 . . . . 5 ((𝑀 ∈ ℕ0𝑖 = (𝑀 + 1)) → if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) = (𝑀 + 1))
20 peano2nn0 11929 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
219, 19, 20, 20fvmptd 6756 . . . 4 (𝑀 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))‘(𝑀 + 1)) = (𝑀 + 1))
223, 4, 5, 8, 21seqp1d 13385 . . 3 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)))
23 eqidd 2802 . . . 4 (𝑀 ∈ ℕ0 → (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))) = (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))))
24 fveq2 6649 . . . . . . . 8 (𝑓 = (Ack‘𝑀) → (IterComp‘𝑓) = (IterComp‘(Ack‘𝑀)))
2524fveq1d 6651 . . . . . . 7 (𝑓 = (Ack‘𝑀) → ((IterComp‘𝑓)‘(𝑛 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑛 + 1)))
2625fveq1d 6651 . . . . . 6 (𝑓 = (Ack‘𝑀) → (((IterComp‘𝑓)‘(𝑛 + 1))‘1) = (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))
2726mpteq2dv 5129 . . . . 5 (𝑓 = (Ack‘𝑀) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
2827ad2antrl 727 . . . 4 ((𝑀 ∈ ℕ0 ∧ (𝑓 = (Ack‘𝑀) ∧ 𝑗 = (𝑀 + 1))) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
29 fvexd 6664 . . . 4 (𝑀 ∈ ℕ0 → (Ack‘𝑀) ∈ V)
30 ovexd 7174 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ V)
31 nn0ex 11895 . . . . . 6 0 ∈ V
3231mptex 6967 . . . . 5 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V
3332a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)) ∈ V)
3423, 28, 29, 30, 33ovmpod 7285 . . 3 (𝑀 ∈ ℕ0 → ((Ack‘𝑀)(𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
3522, 34eqtrd 2836 . 2 (𝑀 ∈ ℕ0 → (seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
362, 35syl5eq 2848 1 (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  Vcvv 3444  ifcif 4428   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  0cc0 10530  1c1 10531   + caddc 10533  ℕ0cn0 11889  seqcseq 13368  IterCompcitco 45058  Ackcack 45059 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369  df-ack 45061 This theorem is referenced by:  ackvalsuc1  45080  ackval1  45082  ackval2  45083  ackval3  45084  ackendofnn0  45085
 Copyright terms: Public domain W3C validator