Detailed syntax breakdown of Definition df-acs
Step | Hyp | Ref
| Expression |
1 | | cacs 17303 |
. 2
class
ACS |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 3433 |
. . 3
class
V |
4 | 2 | cv 1538 |
. . . . . . . 8
class 𝑥 |
5 | 4 | cpw 4534 |
. . . . . . 7
class 𝒫
𝑥 |
6 | | vf |
. . . . . . . 8
setvar 𝑓 |
7 | 6 | cv 1538 |
. . . . . . 7
class 𝑓 |
8 | 5, 5, 7 | wf 6433 |
. . . . . 6
wff 𝑓:𝒫 𝑥⟶𝒫 𝑥 |
9 | | vs |
. . . . . . . . 9
setvar 𝑠 |
10 | | vc |
. . . . . . . . 9
setvar 𝑐 |
11 | 9, 10 | wel 2108 |
. . . . . . . 8
wff 𝑠 ∈ 𝑐 |
12 | 9 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑠 |
13 | 12 | cpw 4534 |
. . . . . . . . . . . 12
class 𝒫
𝑠 |
14 | | cfn 8742 |
. . . . . . . . . . . 12
class
Fin |
15 | 13, 14 | cin 3887 |
. . . . . . . . . . 11
class
(𝒫 𝑠 ∩
Fin) |
16 | 7, 15 | cima 5593 |
. . . . . . . . . 10
class (𝑓 “ (𝒫 𝑠 ∩ Fin)) |
17 | 16 | cuni 4840 |
. . . . . . . . 9
class ∪ (𝑓
“ (𝒫 𝑠 ∩
Fin)) |
18 | 17, 12 | wss 3888 |
. . . . . . . 8
wff ∪ (𝑓
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠 |
19 | 11, 18 | wb 205 |
. . . . . . 7
wff (𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) |
20 | 19, 9, 5 | wral 3065 |
. . . . . 6
wff
∀𝑠 ∈
𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) |
21 | 8, 20 | wa 396 |
. . . . 5
wff (𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) |
22 | 21, 6 | wex 1782 |
. . . 4
wff
∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) |
23 | | cmre 17300 |
. . . . 5
class
Moore |
24 | 4, 23 | cfv 6437 |
. . . 4
class
(Moore‘𝑥) |
25 | 22, 10, 24 | crab 3069 |
. . 3
class {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} |
26 | 2, 3, 25 | cmpt 5158 |
. 2
class (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) |
27 | 1, 26 | wceq 1539 |
1
wff ACS =
(𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) |