MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-acs Structured version   Visualization version   GIF version

Definition df-acs 17307
Description: An important subclass of Moore systems are those which can be interpreted as closure under some collection of operators of finite arity (the collection itself is not required to be finite). These are termed algebraic closure systems; similar to definition (A) of an algebraic closure system in [Schechter] p. 84, but to avoid the complexity of an arbitrary mixed collection of functions of various arities (especially if the axiom of infinity omex 9410 is to be avoided), we consider a single function defined on finite sets instead. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
df-acs ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
Distinct variable group:   𝑓,𝑐,𝑠,𝑥

Detailed syntax breakdown of Definition df-acs
StepHypRef Expression
1 cacs 17303 . 2 class ACS
2 vx . . 3 setvar 𝑥
3 cvv 3433 . . 3 class V
42cv 1538 . . . . . . . 8 class 𝑥
54cpw 4534 . . . . . . 7 class 𝒫 𝑥
6 vf . . . . . . . 8 setvar 𝑓
76cv 1538 . . . . . . 7 class 𝑓
85, 5, 7wf 6433 . . . . . 6 wff 𝑓:𝒫 𝑥⟶𝒫 𝑥
9 vs . . . . . . . . 9 setvar 𝑠
10 vc . . . . . . . . 9 setvar 𝑐
119, 10wel 2108 . . . . . . . 8 wff 𝑠𝑐
129cv 1538 . . . . . . . . . . . . 13 class 𝑠
1312cpw 4534 . . . . . . . . . . . 12 class 𝒫 𝑠
14 cfn 8742 . . . . . . . . . . . 12 class Fin
1513, 14cin 3887 . . . . . . . . . . 11 class (𝒫 𝑠 ∩ Fin)
167, 15cima 5593 . . . . . . . . . 10 class (𝑓 “ (𝒫 𝑠 ∩ Fin))
1716cuni 4840 . . . . . . . . 9 class (𝑓 “ (𝒫 𝑠 ∩ Fin))
1817, 12wss 3888 . . . . . . . 8 wff (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠
1911, 18wb 205 . . . . . . 7 wff (𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)
2019, 9, 5wral 3065 . . . . . 6 wff 𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)
218, 20wa 396 . . . . 5 wff (𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))
2221, 6wex 1782 . . . 4 wff 𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))
23 cmre 17300 . . . . 5 class Moore
244, 23cfv 6437 . . . 4 class (Moore‘𝑥)
2522, 10, 24crab 3069 . . 3 class {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}
262, 3, 25cmpt 5158 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
271, 26wceq 1539 1 wff ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
Colors of variables: wff setvar class
This definition is referenced by:  isacs  17369
  Copyright terms: Public domain W3C validator