MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-acs Structured version   Visualization version   GIF version

Definition df-acs 17396
Description: An important subclass of Moore systems are those which can be interpreted as closure under some collection of operators of finite arity (the collection itself is not required to be finite). These are termed algebraic closure systems; similar to definition (A) of an algebraic closure system in [Schechter] p. 84, but to avoid the complexity of an arbitrary mixed collection of functions of various arities (especially if the axiom of infinity omex 9505 is to be avoided), we consider a single function defined on finite sets instead. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
df-acs ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
Distinct variable group:   𝑓,𝑐,𝑠,𝑥

Detailed syntax breakdown of Definition df-acs
StepHypRef Expression
1 cacs 17392 . 2 class ACS
2 vx . . 3 setvar 𝑥
3 cvv 3442 . . 3 class V
42cv 1540 . . . . . . . 8 class 𝑥
54cpw 4552 . . . . . . 7 class 𝒫 𝑥
6 vf . . . . . . . 8 setvar 𝑓
76cv 1540 . . . . . . 7 class 𝑓
85, 5, 7wf 6480 . . . . . 6 wff 𝑓:𝒫 𝑥⟶𝒫 𝑥
9 vs . . . . . . . . 9 setvar 𝑠
10 vc . . . . . . . . 9 setvar 𝑐
119, 10wel 2107 . . . . . . . 8 wff 𝑠𝑐
129cv 1540 . . . . . . . . . . . . 13 class 𝑠
1312cpw 4552 . . . . . . . . . . . 12 class 𝒫 𝑠
14 cfn 8809 . . . . . . . . . . . 12 class Fin
1513, 14cin 3901 . . . . . . . . . . 11 class (𝒫 𝑠 ∩ Fin)
167, 15cima 5628 . . . . . . . . . 10 class (𝑓 “ (𝒫 𝑠 ∩ Fin))
1716cuni 4857 . . . . . . . . 9 class (𝑓 “ (𝒫 𝑠 ∩ Fin))
1817, 12wss 3902 . . . . . . . 8 wff (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠
1911, 18wb 205 . . . . . . 7 wff (𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)
2019, 9, 5wral 3062 . . . . . 6 wff 𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)
218, 20wa 397 . . . . 5 wff (𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))
2221, 6wex 1781 . . . 4 wff 𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))
23 cmre 17389 . . . . 5 class Moore
244, 23cfv 6484 . . . 4 class (Moore‘𝑥)
2522, 10, 24crab 3404 . . 3 class {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}
262, 3, 25cmpt 5180 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
271, 26wceq 1541 1 wff ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
Colors of variables: wff setvar class
This definition is referenced by:  isacs  17458
  Copyright terms: Public domain W3C validator