Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version |
Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. This
theorem is proved assuming the Axiom of
Infinity and in fact is equivalent to it, as shown by the reverse
derivation inf0 9309.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7699 and Fin = V (the universe of all sets) by fineqv 8967. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7710 through peano5 7714 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 9330 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
2 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
3 | 2 | ralimi2 3083 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
4 | peano5 7714 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
5 | 3, 4 | sylan2 592 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
6 | 5 | eximi 1838 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ∃𝑥ω ⊆ 𝑥) |
7 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | ssex 5240 | . . 3 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
9 | 8 | exlimiv 1934 | . 2 ⊢ (∃𝑥ω ⊆ 𝑥 → ω ∈ V) |
10 | 1, 6, 9 | mp2b 10 | 1 ⊢ ω ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: axinf 9332 inf5 9333 omelon 9334 dfom3 9335 elom3 9336 oancom 9339 isfinite 9340 nnsdom 9342 omenps 9343 omensuc 9344 unbnn3 9347 noinfep 9348 trpredex 9416 tz9.1 9418 tz9.1c 9419 xpct 9703 fseqdom 9713 fseqen 9714 aleph0 9753 alephprc 9786 alephfplem1 9791 alephfplem4 9794 iunfictbso 9801 unctb 9892 r1om 9931 cfom 9951 itunifval 10103 hsmexlem5 10117 axcc2lem 10123 acncc 10127 axcc4dom 10128 domtriomlem 10129 axdclem2 10207 fnct 10224 infinf 10253 unirnfdomd 10254 alephval2 10259 dominfac 10260 iunctb 10261 pwfseqlem4 10349 pwfseqlem5 10350 pwxpndom2 10352 pwdjundom 10354 gchac 10368 wunex2 10425 tskinf 10456 niex 10568 nnexALT 11905 ltweuz 13609 uzenom 13612 nnenom 13628 axdc4uzlem 13631 seqex 13651 rexpen 15865 cctop 22064 2ndcctbss 22514 2ndcdisj 22515 2ndcdisj2 22516 tx2ndc 22710 met2ndci 23584 snct 30950 bnj852 32801 bnj865 32803 satf 33215 satom 33218 satfv0 33220 satfvsuclem1 33221 satfv1lem 33224 satf00 33236 satf0suclem 33237 satf0suc 33238 sat1el2xp 33241 fmla 33243 fmlasuc0 33246 ex-sategoelel 33283 ex-sategoelelomsuc 33288 ex-sategoelel12 33289 prv1n 33293 ttrclse 33713 bj-iomnnom 35357 iunctb2 35501 ctbssinf 35504 |
Copyright terms: Public domain | W3C validator |