| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version | ||
| Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9520.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7816 and Fin = V (the universe of all sets) by fineqv 9160. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7827 through peano5 7831 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ssex 5263 | . 2 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
| 3 | zfinf2 9541 | . . 3 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
| 4 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
| 5 | 4 | ralimi2 3065 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 6 | peano5 7831 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
| 8 | 3, 7 | eximii 1838 | . 2 ⊢ ∃𝑥ω ⊆ 𝑥 |
| 9 | 2, 8 | exlimiiv 1932 | 1 ⊢ ω ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 suc csuc 6315 ωcom 7804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 ax-inf2 9540 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-om 7805 |
| This theorem is referenced by: axinf 9543 inf5 9544 omelon 9545 dfom3 9546 elom3 9547 oancom 9550 isfinite 9551 nnsdom 9553 omenps 9554 omensuc 9555 unbnn3 9558 noinfep 9559 ttrclse 9626 tz9.1 9628 tz9.1c 9629 xpct 9916 fseqdom 9926 fseqen 9927 aleph0 9966 alephprc 9999 alephfplem1 10004 alephfplem4 10007 iunfictbso 10014 unctb 10104 r1om 10143 cfom 10164 itunifval 10316 hsmexlem5 10330 axcc2lem 10336 acncc 10340 axcc4dom 10341 domtriomlem 10342 axdclem2 10420 fnct 10437 infinf 10466 unirnfdomd 10467 alephval2 10472 dominfac 10473 iunctb 10474 pwfseqlem4 10562 pwfseqlem5 10563 pwxpndom2 10565 pwdjundom 10567 gchac 10581 wunex2 10638 tskinf 10669 niex 10781 nnexALT 12136 ltweuz 13872 uzenom 13875 nnenom 13891 axdc4uzlem 13894 seqex 13914 rexpen 16141 cctop 22924 2ndcctbss 23373 2ndcdisj 23374 2ndcdisj2 23375 tx2ndc 23569 met2ndci 24440 snct 32701 bnj852 34956 bnj865 34958 r1omfv 35144 satf 35420 satom 35423 satfv0 35425 satfvsuclem1 35426 satfv1lem 35429 satf00 35441 satf0suclem 35442 satf0suc 35443 sat1el2xp 35446 fmla 35448 fmlasuc0 35451 ex-sategoelel 35488 ex-sategoelelomsuc 35493 ex-sategoelel12 35494 prv1n 35498 bj-iomnnom 37326 iunctb2 37470 ctbssinf 37473 succlg 43448 finonex 43574 orbitex 45075 |
| Copyright terms: Public domain | W3C validator |