![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version |
Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9622.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7871 and Fin = V (the universe of all sets) by fineqv 9269. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7883 through peano5 7888 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 9643 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
2 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
3 | 2 | ralimi2 3077 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
4 | peano5 7888 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
5 | 3, 4 | sylan2 592 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
6 | 5 | eximi 1836 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ∃𝑥ω ⊆ 𝑥) |
7 | vex 3477 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | ssex 5321 | . . 3 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
9 | 8 | exlimiv 1932 | . 2 ⊢ (∃𝑥ω ⊆ 𝑥 → ω ∈ V) |
10 | 1, 6, 9 | mp2b 10 | 1 ⊢ ω ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ⊆ wss 3948 ∅c0 4322 suc csuc 6366 ωcom 7859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-om 7860 |
This theorem is referenced by: axinf 9645 inf5 9646 omelon 9647 dfom3 9648 elom3 9649 oancom 9652 isfinite 9653 nnsdom 9655 omenps 9656 omensuc 9657 unbnn3 9660 noinfep 9661 ttrclse 9728 tz9.1 9730 tz9.1c 9731 xpct 10017 fseqdom 10027 fseqen 10028 aleph0 10067 alephprc 10100 alephfplem1 10105 alephfplem4 10108 iunfictbso 10115 unctb 10206 r1om 10245 cfom 10265 itunifval 10417 hsmexlem5 10431 axcc2lem 10437 acncc 10441 axcc4dom 10442 domtriomlem 10443 axdclem2 10521 fnct 10538 infinf 10567 unirnfdomd 10568 alephval2 10573 dominfac 10574 iunctb 10575 pwfseqlem4 10663 pwfseqlem5 10664 pwxpndom2 10666 pwdjundom 10668 gchac 10682 wunex2 10739 tskinf 10770 niex 10882 nnexALT 12221 ltweuz 13933 uzenom 13936 nnenom 13952 axdc4uzlem 13955 seqex 13975 rexpen 16178 cctop 22742 2ndcctbss 23192 2ndcdisj 23193 2ndcdisj2 23194 tx2ndc 23388 met2ndci 24264 snct 32220 bnj852 34245 bnj865 34247 satf 34657 satom 34660 satfv0 34662 satfvsuclem1 34663 satfv1lem 34666 satf00 34678 satf0suclem 34679 satf0suc 34680 sat1el2xp 34683 fmla 34685 fmlasuc0 34688 ex-sategoelel 34725 ex-sategoelelomsuc 34730 ex-sategoelel12 34731 prv1n 34735 bj-iomnnom 36456 iunctb2 36600 ctbssinf 36603 succlg 42393 finonex 42520 |
Copyright terms: Public domain | W3C validator |