| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version | ||
| Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9536.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7818 and Fin = V (the universe of all sets) by fineqv 9168. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7829 through peano5 7833 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ssex 5263 | . 2 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
| 3 | zfinf2 9557 | . . 3 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
| 4 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
| 5 | 4 | ralimi2 3061 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 6 | peano5 7833 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
| 8 | 3, 7 | eximii 1837 | . 2 ⊢ ∃𝑥ω ⊆ 𝑥 |
| 9 | 2, 8 | exlimiiv 1931 | 1 ⊢ ω ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 suc csuc 6313 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 |
| This theorem is referenced by: axinf 9559 inf5 9560 omelon 9561 dfom3 9562 elom3 9563 oancom 9566 isfinite 9567 nnsdom 9569 omenps 9570 omensuc 9571 unbnn3 9574 noinfep 9575 ttrclse 9642 tz9.1 9644 tz9.1c 9645 xpct 9929 fseqdom 9939 fseqen 9940 aleph0 9979 alephprc 10012 alephfplem1 10017 alephfplem4 10020 iunfictbso 10027 unctb 10117 r1om 10156 cfom 10177 itunifval 10329 hsmexlem5 10343 axcc2lem 10349 acncc 10353 axcc4dom 10354 domtriomlem 10355 axdclem2 10433 fnct 10450 infinf 10479 unirnfdomd 10480 alephval2 10485 dominfac 10486 iunctb 10487 pwfseqlem4 10575 pwfseqlem5 10576 pwxpndom2 10578 pwdjundom 10580 gchac 10594 wunex2 10651 tskinf 10682 niex 10794 nnexALT 12148 ltweuz 13886 uzenom 13889 nnenom 13905 axdc4uzlem 13908 seqex 13928 rexpen 16155 cctop 22909 2ndcctbss 23358 2ndcdisj 23359 2ndcdisj2 23360 tx2ndc 23554 met2ndci 24426 snct 32670 bnj852 34890 bnj865 34892 satf 35328 satom 35331 satfv0 35333 satfvsuclem1 35334 satfv1lem 35337 satf00 35349 satf0suclem 35350 satf0suc 35351 sat1el2xp 35354 fmla 35356 fmlasuc0 35359 ex-sategoelel 35396 ex-sategoelelomsuc 35401 ex-sategoelel12 35402 prv1n 35406 bj-iomnnom 37235 iunctb2 37379 ctbssinf 37382 succlg 43304 finonex 43430 orbitex 44932 |
| Copyright terms: Public domain | W3C validator |