| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version | ||
| Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9633.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7871 and Fin = V (the universe of all sets) by fineqv 9269. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7882 through peano5 7887 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ssex 5291 | . 2 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
| 3 | zfinf2 9654 | . . 3 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
| 4 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
| 5 | 4 | ralimi2 3068 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 6 | peano5 7887 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
| 8 | 3, 7 | eximii 1837 | . 2 ⊢ ∃𝑥ω ⊆ 𝑥 |
| 9 | 2, 8 | exlimiiv 1931 | 1 ⊢ ω ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 suc csuc 6354 ωcom 7859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7860 |
| This theorem is referenced by: axinf 9656 inf5 9657 omelon 9658 dfom3 9659 elom3 9660 oancom 9663 isfinite 9664 nnsdom 9666 omenps 9667 omensuc 9668 unbnn3 9671 noinfep 9672 ttrclse 9739 tz9.1 9741 tz9.1c 9742 xpct 10028 fseqdom 10038 fseqen 10039 aleph0 10078 alephprc 10111 alephfplem1 10116 alephfplem4 10119 iunfictbso 10126 unctb 10216 r1om 10255 cfom 10276 itunifval 10428 hsmexlem5 10442 axcc2lem 10448 acncc 10452 axcc4dom 10453 domtriomlem 10454 axdclem2 10532 fnct 10549 infinf 10578 unirnfdomd 10579 alephval2 10584 dominfac 10585 iunctb 10586 pwfseqlem4 10674 pwfseqlem5 10675 pwxpndom2 10677 pwdjundom 10679 gchac 10693 wunex2 10750 tskinf 10781 niex 10893 nnexALT 12240 ltweuz 13977 uzenom 13980 nnenom 13996 axdc4uzlem 13999 seqex 14019 rexpen 16244 cctop 22942 2ndcctbss 23391 2ndcdisj 23392 2ndcdisj2 23393 tx2ndc 23587 met2ndci 24459 snct 32637 bnj852 34898 bnj865 34900 satf 35321 satom 35324 satfv0 35326 satfvsuclem1 35327 satfv1lem 35330 satf00 35342 satf0suclem 35343 satf0suc 35344 sat1el2xp 35347 fmla 35349 fmlasuc0 35352 ex-sategoelel 35389 ex-sategoelelomsuc 35394 ex-sategoelel12 35395 prv1n 35399 bj-iomnnom 37223 iunctb2 37367 ctbssinf 37370 succlg 43299 finonex 43425 orbitex 44928 |
| Copyright terms: Public domain | W3C validator |