![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version |
Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9690.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7915 and Fin = V (the universe of all sets) by fineqv 9326. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7927 through peano5 7932 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 9711 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
2 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
3 | 2 | ralimi2 3084 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
4 | peano5 7932 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
5 | 3, 4 | sylan2 592 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
6 | 5 | eximi 1833 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ∃𝑥ω ⊆ 𝑥) |
7 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | ssex 5339 | . . 3 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
9 | 8 | exlimiv 1929 | . 2 ⊢ (∃𝑥ω ⊆ 𝑥 → ω ∈ V) |
10 | 1, 6, 9 | mp2b 10 | 1 ⊢ ω ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 suc csuc 6397 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 |
This theorem is referenced by: axinf 9713 inf5 9714 omelon 9715 dfom3 9716 elom3 9717 oancom 9720 isfinite 9721 nnsdom 9723 omenps 9724 omensuc 9725 unbnn3 9728 noinfep 9729 ttrclse 9796 tz9.1 9798 tz9.1c 9799 xpct 10085 fseqdom 10095 fseqen 10096 aleph0 10135 alephprc 10168 alephfplem1 10173 alephfplem4 10176 iunfictbso 10183 unctb 10273 r1om 10312 cfom 10333 itunifval 10485 hsmexlem5 10499 axcc2lem 10505 acncc 10509 axcc4dom 10510 domtriomlem 10511 axdclem2 10589 fnct 10606 infinf 10635 unirnfdomd 10636 alephval2 10641 dominfac 10642 iunctb 10643 pwfseqlem4 10731 pwfseqlem5 10732 pwxpndom2 10734 pwdjundom 10736 gchac 10750 wunex2 10807 tskinf 10838 niex 10950 nnexALT 12295 ltweuz 14012 uzenom 14015 nnenom 14031 axdc4uzlem 14034 seqex 14054 rexpen 16276 cctop 23034 2ndcctbss 23484 2ndcdisj 23485 2ndcdisj2 23486 tx2ndc 23680 met2ndci 24556 snct 32727 bnj852 34897 bnj865 34899 satf 35321 satom 35324 satfv0 35326 satfvsuclem1 35327 satfv1lem 35330 satf00 35342 satf0suclem 35343 satf0suc 35344 sat1el2xp 35347 fmla 35349 fmlasuc0 35352 ex-sategoelel 35389 ex-sategoelelomsuc 35394 ex-sategoelel12 35395 prv1n 35399 bj-iomnnom 37225 iunctb2 37369 ctbssinf 37372 succlg 43290 finonex 43416 |
Copyright terms: Public domain | W3C validator |