![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version |
Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. This
theorem is proved assuming the Axiom of
Infinity and in fact is equivalent to it, as shown by the reverse
derivation inf0 8815.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7354 and Fin = V (the universe of all sets) by fineqv 8463. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7363 through peano5 7367 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 8836 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
2 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
3 | 2 | ralimi2 3131 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
4 | peano5 7367 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
5 | 3, 4 | sylan2 586 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
6 | 5 | eximi 1878 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ∃𝑥ω ⊆ 𝑥) |
7 | vex 3401 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | ssex 5039 | . . 3 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
9 | 8 | exlimiv 1973 | . 2 ⊢ (∃𝑥ω ⊆ 𝑥 → ω ∈ V) |
10 | 1, 6, 9 | mp2b 10 | 1 ⊢ ω ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∃wex 1823 ∈ wcel 2107 ∀wral 3090 Vcvv 3398 ⊆ wss 3792 ∅c0 4141 suc csuc 5978 ωcom 7343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-om 7344 |
This theorem is referenced by: axinf 8838 inf5 8839 omelon 8840 dfom3 8841 elom3 8842 oancom 8845 isfinite 8846 nnsdom 8848 omenps 8849 omensuc 8850 unbnn3 8853 noinfep 8854 tz9.1 8902 tz9.1c 8903 xpct 9172 fseqdom 9182 fseqen 9183 aleph0 9222 alephprc 9255 alephfplem1 9260 alephfplem4 9263 iunfictbso 9270 unctb 9362 r1om 9401 cfom 9421 itunifval 9573 hsmexlem5 9587 axcc2lem 9593 acncc 9597 axcc4dom 9598 domtriomlem 9599 axdclem2 9677 fnct 9694 infinf 9723 unirnfdomd 9724 alephval2 9729 dominfac 9730 iunctb 9731 pwfseqlem4 9819 pwfseqlem5 9820 pwxpndom2 9822 pwcdandom 9824 gchac 9838 wunex2 9895 tskinf 9926 niex 10038 nnexALT 11376 ltweuz 13079 uzenom 13082 nnenom 13098 axdc4uzlem 13101 seqex 13121 rexpen 15361 cctop 21218 2ndcctbss 21667 2ndcdisj 21668 2ndcdisj2 21669 tx1stc 21862 tx2ndc 21863 met2ndci 22735 snct 30057 bnj852 31590 bnj865 31592 trpredex 32325 bj-iomnnom 33737 |
Copyright terms: Public domain | W3C validator |