| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version | ||
| Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9511.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7808 and Fin = V (the universe of all sets) by fineqv 9151. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7819 through peano5 7823 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ssex 5259 | . 2 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
| 3 | zfinf2 9532 | . . 3 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
| 4 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
| 5 | 4 | ralimi2 3064 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 6 | peano5 7823 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
| 8 | 3, 7 | eximii 1838 | . 2 ⊢ ∃𝑥ω ⊆ 𝑥 |
| 9 | 2, 8 | exlimiiv 1932 | 1 ⊢ ω ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 suc csuc 6308 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-om 7797 |
| This theorem is referenced by: axinf 9534 inf5 9535 omelon 9536 dfom3 9537 elom3 9538 oancom 9541 isfinite 9542 nnsdom 9544 omenps 9545 omensuc 9546 unbnn3 9549 noinfep 9550 ttrclse 9617 tz9.1 9619 tz9.1c 9620 xpct 9907 fseqdom 9917 fseqen 9918 aleph0 9957 alephprc 9990 alephfplem1 9995 alephfplem4 9998 iunfictbso 10005 unctb 10095 r1om 10134 cfom 10155 itunifval 10307 hsmexlem5 10321 axcc2lem 10327 acncc 10331 axcc4dom 10332 domtriomlem 10333 axdclem2 10411 fnct 10428 infinf 10457 unirnfdomd 10458 alephval2 10463 dominfac 10464 iunctb 10465 pwfseqlem4 10553 pwfseqlem5 10554 pwxpndom2 10556 pwdjundom 10558 gchac 10572 wunex2 10629 tskinf 10660 niex 10772 nnexALT 12127 ltweuz 13868 uzenom 13871 nnenom 13887 axdc4uzlem 13890 seqex 13910 rexpen 16137 cctop 22922 2ndcctbss 23371 2ndcdisj 23372 2ndcdisj2 23373 tx2ndc 23567 met2ndci 24438 snct 32693 bnj852 34931 bnj865 34933 r1omfv 35119 satf 35395 satom 35398 satfv0 35400 satfvsuclem1 35401 satfv1lem 35404 satf00 35416 satf0suclem 35417 satf0suc 35418 sat1el2xp 35421 fmla 35423 fmlasuc0 35426 ex-sategoelel 35463 ex-sategoelelomsuc 35468 ex-sategoelel12 35469 prv1n 35473 bj-iomnnom 37299 iunctb2 37443 ctbssinf 37446 succlg 43367 finonex 43493 orbitex 44994 |
| Copyright terms: Public domain | W3C validator |