![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version |
Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9612.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7862 and Fin = V (the universe of all sets) by fineqv 9259. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7874 through peano5 7879 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 9633 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
2 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
3 | 2 | ralimi2 3079 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
4 | peano5 7879 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
5 | 3, 4 | sylan2 594 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
6 | 5 | eximi 1838 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ∃𝑥ω ⊆ 𝑥) |
7 | vex 3479 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | ssex 5320 | . . 3 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
9 | 8 | exlimiv 1934 | . 2 ⊢ (∃𝑥ω ⊆ 𝑥 → ω ∈ V) |
10 | 1, 6, 9 | mp2b 10 | 1 ⊢ ω ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ⊆ wss 3947 ∅c0 4321 suc csuc 6363 ωcom 7850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-om 7851 |
This theorem is referenced by: axinf 9635 inf5 9636 omelon 9637 dfom3 9638 elom3 9639 oancom 9642 isfinite 9643 nnsdom 9645 omenps 9646 omensuc 9647 unbnn3 9650 noinfep 9651 ttrclse 9718 tz9.1 9720 tz9.1c 9721 xpct 10007 fseqdom 10017 fseqen 10018 aleph0 10057 alephprc 10090 alephfplem1 10095 alephfplem4 10098 iunfictbso 10105 unctb 10196 r1om 10235 cfom 10255 itunifval 10407 hsmexlem5 10421 axcc2lem 10427 acncc 10431 axcc4dom 10432 domtriomlem 10433 axdclem2 10511 fnct 10528 infinf 10557 unirnfdomd 10558 alephval2 10563 dominfac 10564 iunctb 10565 pwfseqlem4 10653 pwfseqlem5 10654 pwxpndom2 10656 pwdjundom 10658 gchac 10672 wunex2 10729 tskinf 10760 niex 10872 nnexALT 12210 ltweuz 13922 uzenom 13925 nnenom 13941 axdc4uzlem 13944 seqex 13964 rexpen 16167 cctop 22491 2ndcctbss 22941 2ndcdisj 22942 2ndcdisj2 22943 tx2ndc 23137 met2ndci 24013 snct 31916 bnj852 33870 bnj865 33872 satf 34282 satom 34285 satfv0 34287 satfvsuclem1 34288 satfv1lem 34291 satf00 34303 satf0suclem 34304 satf0suc 34305 sat1el2xp 34308 fmla 34310 fmlasuc0 34313 ex-sategoelel 34350 ex-sategoelelomsuc 34355 ex-sategoelel12 34356 prv1n 34360 bj-iomnnom 36078 iunctb2 36222 ctbssinf 36225 succlg 42011 finonex 42138 |
Copyright terms: Public domain | W3C validator |