| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version | ||
| Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9581.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7857 and Fin = V (the universe of all sets) by fineqv 9217. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7868 through peano5 7872 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ssex 5279 | . 2 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
| 3 | zfinf2 9602 | . . 3 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
| 4 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
| 5 | 4 | ralimi2 3062 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 6 | peano5 7872 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
| 8 | 3, 7 | eximii 1837 | . 2 ⊢ ∃𝑥ω ⊆ 𝑥 |
| 9 | 2, 8 | exlimiiv 1931 | 1 ⊢ ω ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 suc csuc 6337 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 |
| This theorem is referenced by: axinf 9604 inf5 9605 omelon 9606 dfom3 9607 elom3 9608 oancom 9611 isfinite 9612 nnsdom 9614 omenps 9615 omensuc 9616 unbnn3 9619 noinfep 9620 ttrclse 9687 tz9.1 9689 tz9.1c 9690 xpct 9976 fseqdom 9986 fseqen 9987 aleph0 10026 alephprc 10059 alephfplem1 10064 alephfplem4 10067 iunfictbso 10074 unctb 10164 r1om 10203 cfom 10224 itunifval 10376 hsmexlem5 10390 axcc2lem 10396 acncc 10400 axcc4dom 10401 domtriomlem 10402 axdclem2 10480 fnct 10497 infinf 10526 unirnfdomd 10527 alephval2 10532 dominfac 10533 iunctb 10534 pwfseqlem4 10622 pwfseqlem5 10623 pwxpndom2 10625 pwdjundom 10627 gchac 10641 wunex2 10698 tskinf 10729 niex 10841 nnexALT 12195 ltweuz 13933 uzenom 13936 nnenom 13952 axdc4uzlem 13955 seqex 13975 rexpen 16203 cctop 22900 2ndcctbss 23349 2ndcdisj 23350 2ndcdisj2 23351 tx2ndc 23545 met2ndci 24417 snct 32644 bnj852 34918 bnj865 34920 satf 35347 satom 35350 satfv0 35352 satfvsuclem1 35353 satfv1lem 35356 satf00 35368 satf0suclem 35369 satf0suc 35370 sat1el2xp 35373 fmla 35375 fmlasuc0 35378 ex-sategoelel 35415 ex-sategoelelomsuc 35420 ex-sategoelel12 35421 prv1n 35425 bj-iomnnom 37254 iunctb2 37398 ctbssinf 37401 succlg 43324 finonex 43450 orbitex 44952 |
| Copyright terms: Public domain | W3C validator |