MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismre Structured version   Visualization version   GIF version

Theorem ismre 17648
Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
ismre (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismre
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6958 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
2 elex 3509 . . 3 (𝑋𝐶𝑋 ∈ V)
323ad2ant2 1134 . 2 ((𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → 𝑋 ∈ V)
4 pweq 4636 . . . . . . 7 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
54pweqd 4639 . . . . . 6 (𝑥 = 𝑋 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝑋)
6 eleq1 2832 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑐𝑋𝑐))
76anbi1d 630 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)) ↔ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))))
85, 7rabeqbidv 3462 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} = {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
9 df-mre 17644 . . . . 5 Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
10 vpwex 5395 . . . . . . 7 𝒫 𝑥 ∈ V
1110pwex 5398 . . . . . 6 𝒫 𝒫 𝑥 ∈ V
1211rabex 5357 . . . . 5 {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ∈ V
138, 9, 12fvmpt3i 7034 . . . 4 (𝑋 ∈ V → (Moore‘𝑋) = {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
1413eleq2d 2830 . . 3 (𝑋 ∈ V → (𝐶 ∈ (Moore‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}))
15 eleq2 2833 . . . . . 6 (𝑐 = 𝐶 → (𝑋𝑐𝑋𝐶))
16 pweq 4636 . . . . . . 7 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
17 eleq2 2833 . . . . . . . 8 (𝑐 = 𝐶 → ( 𝑠𝑐 𝑠𝐶))
1817imbi2d 340 . . . . . . 7 (𝑐 = 𝐶 → ((𝑠 ≠ ∅ → 𝑠𝑐) ↔ (𝑠 ≠ ∅ → 𝑠𝐶)))
1916, 18raleqbidv 3354 . . . . . 6 (𝑐 = 𝐶 → (∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐) ↔ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
2015, 19anbi12d 631 . . . . 5 (𝑐 = 𝐶 → ((𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)) ↔ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2120elrab 3708 . . . 4 (𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ↔ (𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2221a1i 11 . . 3 (𝑋 ∈ V → (𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ↔ (𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))))
23 pwexg 5396 . . . . . 6 (𝑋 ∈ V → 𝒫 𝑋 ∈ V)
24 elpw2g 5351 . . . . . 6 (𝒫 𝑋 ∈ V → (𝐶 ∈ 𝒫 𝒫 𝑋𝐶 ⊆ 𝒫 𝑋))
2523, 24syl 17 . . . . 5 (𝑋 ∈ V → (𝐶 ∈ 𝒫 𝒫 𝑋𝐶 ⊆ 𝒫 𝑋))
2625anbi1d 630 . . . 4 (𝑋 ∈ V → ((𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))))
27 3anass 1095 . . . 4 ((𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2826, 27bitr4di 289 . . 3 (𝑋 ∈ V → ((𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2914, 22, 283bitrd 305 . 2 (𝑋 ∈ V → (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
301, 3, 29pm5.21nii 378 1 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622   cint 4970  cfv 6573  Moorecmre 17640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mre 17644
This theorem is referenced by:  mresspw  17650  mre1cl  17652  mreintcl  17653  ismred  17660
  Copyright terms: Public domain W3C validator