Step | Hyp | Ref
| Expression |
1 | | elfvex 6807 |
. 2
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ V) |
2 | | elex 3450 |
. . 3
⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ V) |
3 | 2 | 3ad2ant2 1133 |
. 2
⊢ ((𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)) → 𝑋 ∈ V) |
4 | | pweq 4549 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋) |
5 | 4 | pweqd 4552 |
. . . . . 6
⊢ (𝑥 = 𝑋 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝑋) |
6 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑐 ↔ 𝑋 ∈ 𝑐)) |
7 | 6 | anbi1d 630 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐)) ↔ (𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐)))) |
8 | 5, 7 | rabeqbidv 3420 |
. . . . 5
⊢ (𝑥 = 𝑋 → {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))} = {𝑐 ∈ 𝒫 𝒫
𝑋 ∣ (𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))}) |
9 | | df-mre 17295 |
. . . . 5
⊢ Moore =
(𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫
𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))}) |
10 | | vpwex 5300 |
. . . . . . 7
⊢ 𝒫
𝑥 ∈ V |
11 | 10 | pwex 5303 |
. . . . . 6
⊢ 𝒫
𝒫 𝑥 ∈
V |
12 | 11 | rabex 5256 |
. . . . 5
⊢ {𝑐 ∈ 𝒫 𝒫
𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))} ∈
V |
13 | 8, 9, 12 | fvmpt3i 6880 |
. . . 4
⊢ (𝑋 ∈ V →
(Moore‘𝑋) = {𝑐 ∈ 𝒫 𝒫
𝑋 ∣ (𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))}) |
14 | 13 | eleq2d 2824 |
. . 3
⊢ (𝑋 ∈ V → (𝐶 ∈ (Moore‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))})) |
15 | | eleq2 2827 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑋 ∈ 𝑐 ↔ 𝑋 ∈ 𝐶)) |
16 | | pweq 4549 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶) |
17 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (∩ 𝑠 ∈ 𝑐 ↔ ∩ 𝑠 ∈ 𝐶)) |
18 | 17 | imbi2d 341 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → ((𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐) ↔ (𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))) |
19 | 16, 18 | raleqbidv 3336 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐) ↔
∀𝑠 ∈ 𝒫
𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))) |
20 | 15, 19 | anbi12d 631 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐)) ↔ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)))) |
21 | 20 | elrab 3624 |
. . . 4
⊢ (𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))} ↔ (𝐶 ∈ 𝒫 𝒫
𝑋 ∧ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)))) |
22 | 21 | a1i 11 |
. . 3
⊢ (𝑋 ∈ V → (𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))} ↔ (𝐶 ∈ 𝒫 𝒫
𝑋 ∧ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))))) |
23 | | pwexg 5301 |
. . . . . 6
⊢ (𝑋 ∈ V → 𝒫 𝑋 ∈ V) |
24 | | elpw2g 5268 |
. . . . . 6
⊢
(𝒫 𝑋 ∈
V → (𝐶 ∈
𝒫 𝒫 𝑋
↔ 𝐶 ⊆ 𝒫
𝑋)) |
25 | 23, 24 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ V → (𝐶 ∈ 𝒫 𝒫
𝑋 ↔ 𝐶 ⊆ 𝒫 𝑋)) |
26 | 25 | anbi1d 630 |
. . . 4
⊢ (𝑋 ∈ V → ((𝐶 ∈ 𝒫 𝒫
𝑋 ∧ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))))) |
27 | | 3anass 1094 |
. . . 4
⊢ ((𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)))) |
28 | 26, 27 | bitr4di 289 |
. . 3
⊢ (𝑋 ∈ V → ((𝐶 ∈ 𝒫 𝒫
𝑋 ∧ (𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)))) |
29 | 14, 22, 28 | 3bitrd 305 |
. 2
⊢ (𝑋 ∈ V → (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶)))) |
30 | 1, 3, 29 | pm5.21nii 380 |
1
⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝐶))) |