Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismre Structured version   Visualization version   GIF version

Theorem ismre 16850
 Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
ismre (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismre
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6684 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
2 elex 3497 . . 3 (𝑋𝐶𝑋 ∈ V)
323ad2ant2 1131 . 2 ((𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) → 𝑋 ∈ V)
4 pweq 4536 . . . . . . 7 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
54pweqd 4539 . . . . . 6 (𝑥 = 𝑋 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝑋)
6 eleq1 2903 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑐𝑋𝑐))
76anbi1d 632 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)) ↔ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))))
85, 7rabeqbidv 3470 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} = {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
9 df-mre 16846 . . . . 5 Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
10 vpwex 5259 . . . . . . 7 𝒫 𝑥 ∈ V
1110pwex 5262 . . . . . 6 𝒫 𝒫 𝑥 ∈ V
1211rabex 5216 . . . . 5 {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ∈ V
138, 9, 12fvmpt3i 6754 . . . 4 (𝑋 ∈ V → (Moore‘𝑋) = {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
1413eleq2d 2901 . . 3 (𝑋 ∈ V → (𝐶 ∈ (Moore‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}))
15 eleq2 2904 . . . . . 6 (𝑐 = 𝐶 → (𝑋𝑐𝑋𝐶))
16 pweq 4536 . . . . . . 7 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
17 eleq2 2904 . . . . . . . 8 (𝑐 = 𝐶 → ( 𝑠𝑐 𝑠𝐶))
1817imbi2d 344 . . . . . . 7 (𝑐 = 𝐶 → ((𝑠 ≠ ∅ → 𝑠𝑐) ↔ (𝑠 ≠ ∅ → 𝑠𝐶)))
1916, 18raleqbidv 3392 . . . . . 6 (𝑐 = 𝐶 → (∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐) ↔ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
2015, 19anbi12d 633 . . . . 5 (𝑐 = 𝐶 → ((𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)) ↔ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2120elrab 3665 . . . 4 (𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ↔ (𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2221a1i 11 . . 3 (𝑋 ∈ V → (𝐶 ∈ {𝑐 ∈ 𝒫 𝒫 𝑋 ∣ (𝑋𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ↔ (𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))))
23 pwexg 5260 . . . . . 6 (𝑋 ∈ V → 𝒫 𝑋 ∈ V)
24 elpw2g 5228 . . . . . 6 (𝒫 𝑋 ∈ V → (𝐶 ∈ 𝒫 𝒫 𝑋𝐶 ⊆ 𝒫 𝑋))
2523, 24syl 17 . . . . 5 (𝑋 ∈ V → (𝐶 ∈ 𝒫 𝒫 𝑋𝐶 ⊆ 𝒫 𝑋))
2625anbi1d 632 . . . 4 (𝑋 ∈ V → ((𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))))
27 3anass 1092 . . . 4 ((𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2826, 27syl6bbr 292 . . 3 (𝑋 ∈ V → ((𝐶 ∈ 𝒫 𝒫 𝑋 ∧ (𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
2914, 22, 283bitrd 308 . 2 (𝑋 ∈ V → (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))))
301, 3, 29pm5.21nii 383 1 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  ∀wral 3132  {crab 3136  Vcvv 3479   ⊆ wss 3918  ∅c0 4274  𝒫 cpw 4520  ∩ cint 4857  ‘cfv 6336  Moorecmre 16842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6295  df-fun 6338  df-fv 6344  df-mre 16846 This theorem is referenced by:  mresspw  16852  mre1cl  16854  mreintcl  16855  ismred  16862
 Copyright terms: Public domain W3C validator