| Metamath
Proof Explorer Theorem List (p. 176 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | imasaddfn 17501* | The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
| Theorem | imasaddval 17502* | The value of an image structure's group operation. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasaddf 17503* | The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | imasmulfn 17504* | The image structure's ring multiplication is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
| Theorem | imasmulval 17505* | The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasmulf 17506* | The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | imasvscafn 17507* | The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) ⇒ ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) | ||
| Theorem | imasvscaval 17508* | The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasvscaf 17509* | The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) | ||
| Theorem | imasless 17510 | The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ ≤ = (le‘𝑈) ⇒ ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) | ||
| Theorem | imasleval 17511* | The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ ≤ = (le‘𝑈) & ⊢ 𝑁 = (le‘𝑅) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)) | ||
| Theorem | qusval 17512* | Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | ||
| Theorem | quslem 17513* | The function in qusval 17512 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) | ||
| Theorem | qusin 17514 | Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | ||
| Theorem | qusbas 17515 | Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) | ||
| Theorem | quss 17516 | The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐾 = (Scalar‘𝑅) ⇒ ⊢ (𝜑 → 𝐾 = (Scalar‘𝑈)) | ||
| Theorem | divsfval 17517* | Value of the function in qusval 17512. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) | ||
| Theorem | ercpbllem 17518* | Lemma for ercpbl 17519. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) | ||
| Theorem | ercpbl 17519* | Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 + 𝑏) ∈ 𝑉) & ⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) | ||
| Theorem | erlecpbl 17520* | Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) | ||
| Theorem | qusaddvallem 17521* | Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | qusaddflem 17522* | The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
| Theorem | qusaddval 17523* | The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | qusaddf 17524* | The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
| Theorem | qusmulval 17525* | The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | qusmulf 17526* | The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
| Theorem | fnpr2o 17527 | Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) | ||
| Theorem | fnpr2ob 17528 | Biconditional version of fnpr2o 17527. (Contributed by Jim Kingdon, 27-Sep-2023.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) | ||
| Theorem | fvpr0o 17529 | The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) | ||
| Theorem | fvpr1o 17530 | The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | ||
| Theorem | fvprif 17531 | The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 2o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)) | ||
| Theorem | xpsfrnel 17532* | Elementhood in the target space of the function 𝐹 appearing in xpsval 17540. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐺 ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)) | ||
| Theorem | xpsfeq 17533 | A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) | ||
| Theorem | xpsfrnel2 17534* | Elementhood in the target space of the function 𝐹 appearing in xpsval 17540. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | xpscf 17535 | Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | ||
| Theorem | xpsfval 17536* | The value of the function appearing in xpsval 17540. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) | ||
| Theorem | xpsff1o 17537* | The function appearing in xpsval 17540 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | ||
| Theorem | xpsfrn 17538* | A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | ||
| Theorem | xpsff1o2 17539* | The function appearing in xpsval 17540 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 | ||
| Theorem | xpsval 17540* | Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ⇒ ⊢ (𝜑 → 𝑇 = (◡𝐹 “s 𝑈)) | ||
| Theorem | xpsrnbas 17541* | The indexed structure product that appears in xpsval 17540 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ⇒ ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) | ||
| Theorem | xpsbas 17542 | The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) | ||
| Theorem | xpsaddlem 17543* | Lemma for xpsadd 17544 and xpsmul 17545. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (𝐸‘𝑅) & ⊢ × = (𝐸‘𝑆) & ⊢ ∙ = (𝐸‘𝑇) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ 𝑈 = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) & ⊢ ((𝜑 ∧ {〈∅, 𝐴〉, 〈1o, 𝐵〉} ∈ ran 𝐹 ∧ {〈∅, 𝐶〉, 〈1o, 𝐷〉} ∈ ran 𝐹) → ((◡𝐹‘{〈∅, 𝐴〉, 〈1o, 𝐵〉}) ∙ (◡𝐹‘{〈∅, 𝐶〉, 〈1o, 𝐷〉})) = (◡𝐹‘({〈∅, 𝐴〉, 〈1o, 𝐵〉} (𝐸‘𝑈){〈∅, 𝐶〉, 〈1o, 𝐷〉}))) & ⊢ (({〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o ∧ {〈∅, 𝐴〉, 〈1o, 𝐵〉} ∈ (Base‘𝑈) ∧ {〈∅, 𝐶〉, 〈1o, 𝐷〉} ∈ (Base‘𝑈)) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉} (𝐸‘𝑈){〈∅, 𝐶〉, 〈1o, 𝐷〉}) = (𝑘 ∈ 2o ↦ (({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘𝑘)(𝐸‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))({〈∅, 𝐶〉, 〈1o, 𝐷〉}‘𝑘)))) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| Theorem | xpsadd 17544 | Value of the addition operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (+g‘𝑅) & ⊢ × = (+g‘𝑆) & ⊢ ∙ = (+g‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| Theorem | xpsmul 17545 | Value of the multiplication operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ ∙ = (.r‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| Theorem | xpssca 17546 | Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) | ||
| Theorem | xpsvsca 17547 | Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ × = ( ·𝑠 ‘𝑆) & ⊢ ∙ = ( ·𝑠 ‘𝑇) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑋) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝐴 ∙ 〈𝐵, 𝐶〉) = 〈(𝐴 · 𝐵), (𝐴 × 𝐶)〉) | ||
| Theorem | xpsless 17548 | Closure of the ordering in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ≤ = (le‘𝑇) ⇒ ⊢ (𝜑 → ≤ ⊆ ((𝑋 × 𝑌) × (𝑋 × 𝑌))) | ||
| Theorem | xpsle 17549 | Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ≤ = (le‘𝑇) & ⊢ 𝑀 = (le‘𝑅) & ⊢ 𝑁 = (le‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ≤ 〈𝐶, 𝐷〉 ↔ (𝐴𝑀𝐶 ∧ 𝐵𝑁𝐷))) | ||
| Syntax | cmre 17550 | The class of Moore systems. |
| class Moore | ||
| Syntax | cmrc 17551 | The class function generating Moore closures. |
| class mrCls | ||
| Syntax | cmri 17552 | mrInd is a class function which takes a Moore system to its set of independent sets. |
| class mrInd | ||
| Syntax | cacs 17553 | The class of algebraic closure (Moore) systems. |
| class ACS | ||
| Definition | df-mre 17554* |
Define a Moore collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 22972) and vector spaces (lssmre 20879)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17558, mresspw 17560, mre1cl 17562 and mreintcl 17563 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17568); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17569. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
| ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | ||
| Definition | df-mrc 17555* |
Define the Moore closure of a generating set, which is the smallest
closed set containing all generating elements. Definition of Moore
closure in [Schechter] p. 79. This
generalizes topological closure
(mrccls 22973) and linear span (mrclsp 20902).
A Moore closure operation 𝑁 is (1) extensive, i.e., 𝑥 ⊆ (𝑁‘𝑥) for all subsets 𝑥 of the base set (mrcssid 17585), (2) isotone, i.e., 𝑥 ⊆ 𝑦 implies that (𝑁‘𝑥) ⊆ (𝑁‘𝑦) for all subsets 𝑥 and 𝑦 of the base set (mrcss 17584), and (3) idempotent, i.e., (𝑁‘(𝑁‘𝑥)) = (𝑁‘𝑥) for all subsets 𝑥 of the base set (mrcidm 17587.) Operators satisfying these three properties are in bijective correspondence with Moore collections, so these properties may be used to give an alternate characterization of a Moore collection by providing a closure operation 𝑁 on the set of subsets of a given base set which satisfies (1), (2), and (3); the closed sets can be recovered as those sets which equal their closures (Section 4.5 in [Schechter] p. 82.) (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
| ⊢ mrCls = (𝑐 ∈ ∪ ran Moore ↦ (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) | ||
| Definition | df-mri 17556* | In a Moore system, a set is independent if no element of the set is in the closure of the set with the element removed (Section 0.6 in [Gratzer] p. 27; Definition 4.1.1 in [FaureFrolicher] p. 83.) mrInd is a class function which takes a Moore system to its set of independent sets. (Contributed by David Moews, 1-May-2017.) |
| ⊢ mrInd = (𝑐 ∈ ∪ ran Moore ↦ {𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))}) | ||
| Definition | df-acs 17557* | An important subclass of Moore systems are those which can be interpreted as closure under some collection of operators of finite arity (the collection itself is not required to be finite). These are termed algebraic closure systems; similar to definition (A) of an algebraic closure system in [Schechter] p. 84, but to avoid the complexity of an arbitrary mixed collection of functions of various arities (especially if the axiom of infinity omex 9603 is to be avoided), we consider a single function defined on finite sets instead. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) | ||
| Theorem | ismre 17558* | Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | ||
| Theorem | fnmre 17559 | The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 22818 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ Moore Fn V | ||
| Theorem | mresspw 17560 | A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | ||
| Theorem | mress 17561 | A Moore-closed subset is a subset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | ||
| Theorem | mre1cl 17562 | In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | ||
| Theorem | mreintcl 17563 | A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | ||
| Theorem | mreiincl 17564* | A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | ||
| Theorem | mrerintcl 17565 | The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) | ||
| Theorem | mreriincl 17566* | The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) | ||
| Theorem | mreincl 17567 | Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) | ||
| Theorem | mreuni 17568 | Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | ||
| Theorem | mreunirn 17569 | Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) | ||
| Theorem | ismred 17570* | Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) | ||
| Theorem | ismred2 17571* | Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) | ||
| Theorem | mremre 17572 | The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋)) | ||
| Theorem | submre 17573 | The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴)) | ||
| Theorem | mrcflem 17574* | The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) | ||
| Theorem | fnmrc 17575 | Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ mrCls Fn ∪ ran Moore | ||
| Theorem | mrcfval 17576* | Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) | ||
| Theorem | mrcf 17577 | The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) | ||
| Theorem | mrcval 17578* | Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) | ||
| Theorem | mrccl 17579 | The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) | ||
| Theorem | mrcsncl 17580 | The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) | ||
| Theorem | mrcid 17581 | The closure of a closed set is itself. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) | ||
| Theorem | mrcssv 17582 | The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) | ||
| Theorem | mrcidb 17583 | A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) | ||
| Theorem | mrcss 17584 | Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) | ||
| Theorem | mrcssid 17585 | The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ (𝐹‘𝑈)) | ||
| Theorem | mrcidb2 17586 | A set is closed iff it contains its closure. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) ⊆ 𝑈)) | ||
| Theorem | mrcidm 17587 | The closure operation is idempotent. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘(𝐹‘𝑈)) = (𝐹‘𝑈)) | ||
| Theorem | mrcsscl 17588 | The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) | ||
| Theorem | mrcuni 17589 | Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) = (𝐹‘∪ (𝐹 “ 𝑈))) | ||
| Theorem | mrcun 17590 | Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘(𝑈 ∪ 𝑉)) = (𝐹‘((𝐹‘𝑈) ∪ (𝐹‘𝑉)))) | ||
| Theorem | mrcssvd 17591 | The Moore closure of a set is a subset of the base. Deduction form of mrcssv 17582. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) ⇒ ⊢ (𝜑 → (𝑁‘𝐵) ⊆ 𝑋) | ||
| Theorem | mrcssd 17592 | Moore closure preserves subset ordering. Deduction form of mrcss 17584. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑉 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) | ||
| Theorem | mrcssidd 17593 | A set is contained in its Moore closure. Deduction form of mrcssid 17585. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑈 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘𝑈)) | ||
| Theorem | mrcidmd 17594 | Moore closure is idempotent. Deduction form of mrcidm 17587. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑈 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) | ||
| Theorem | mressmrcd 17595 | In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | ||
| Theorem | submrc 17596 | In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷)) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) = (𝐹‘𝑈)) | ||
| Theorem | mrieqvlemd 17597 | In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17606 and mrieqv2d 17607. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) | ||
| Theorem | mrisval 17598* | Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}) | ||
| Theorem | ismri 17599* | Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) | ||
| Theorem | ismri2 17600* | Criterion for a subset of the base set in a Moore system to be independent. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |