| Metamath
Proof Explorer Theorem List (p. 176 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pwselbas 17501 | An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) | ||
| Theorem | pwsplusgval 17502 | Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) | ||
| Theorem | pwsmulrval 17503 | Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘f · 𝐺)) | ||
| Theorem | pwsle 17504 | Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑂 = (le‘𝑅) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ≤ = ( ∘r 𝑂 ∩ (𝐵 × 𝐵))) | ||
| Theorem | pwsleval 17505* | Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑂 = (le‘𝑅) & ⊢ ≤ = (le‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥)𝑂(𝐺‘𝑥))) | ||
| Theorem | pwsvscafval 17506 | Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) | ||
| Theorem | pwsvscaval 17507 | Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
| Theorem | pwssca 17508 | The ring of scalars of a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝑆 = (Scalar‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑆 = (Scalar‘𝑌)) | ||
| Theorem | pwsdiagel 17509 | Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑌) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐼 × {𝐴}) ∈ 𝐶) | ||
| Theorem | pwssnf1o 17510* | Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s {𝐼}) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ ({𝐼} × {𝑥})) & ⊢ 𝐶 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Syntax | cordt 17511 | Extend class notation with the order topology. |
| class ordTop | ||
| Syntax | cxrs 17512 | Extend class notation with the extended real number structure. |
| class ℝ*𝑠 | ||
| Definition | df-ordt 17513* | Define the order topology, given an order ≤, written as 𝑟 below. A closed subbasis for the order topology is given by the closed rays [𝑦, +∞) = {𝑧 ∈ 𝑋 ∣ 𝑦 ≤ 𝑧} and (-∞, 𝑦] = {𝑧 ∈ 𝑋 ∣ 𝑧 ≤ 𝑦}, along with (-∞, +∞) = 𝑋 itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))))) | ||
| Definition | df-xrs 17514* | The extended real number structure. Unlike df-cnfld 21314, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21314. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with ℂfld when restricted to ℝ. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | ||
| Syntax | cqtop 17515 | Extend class notation with the quotient topology function. |
| class qTop | ||
| Syntax | cimas 17516 | Image structure function. |
| class “s | ||
| Syntax | cqus 17517 | Quotient structure function. |
| class /s | ||
| Syntax | cxps 17518 | Binary product structure function. |
| class ×s | ||
| Definition | df-qtop 17519* | Define the quotient topology given a function 𝑓 and topology 𝑗 on the domain of 𝑓. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗) ∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) | ||
| Definition | df-imas 17520* |
Define an image structure, which takes a structure and a function on the
base set, and maps all the operations via the function. For this to
work properly 𝑓 must either be injective or satisfy
the
well-definedness condition 𝑓(𝑎) = 𝑓(𝑐) ∧ 𝑓(𝑏) = 𝑓(𝑑) →
𝑓(𝑎 + 𝑏) = 𝑓(𝑐 + 𝑑) for each relevant operation.
Note that although we call this an "image" by association to df-ima 5667, in order to keep the definition simple we consider only the case when the domain of 𝐹 is equal to the base set of 𝑅. Other cases can be achieved by restricting 𝐹 (with df-res 5666) and/or 𝑅 ( with df-ress 17250) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.) |
| ⊢ “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ ⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉, 〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈( ·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠 ‘𝑟)𝑞)))〉, 〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪ {〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑟) ∘ 𝑔))), ℝ*, < ))〉})) | ||
| Definition | df-qus 17521* | Define a quotient ring (or quotient group), which is a special case of an image structure df-imas 17520 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | ||
| Definition | df-xps 17522* | Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
| ⊢ ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) | ||
| Theorem | imasval 17523* | Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ , = (·𝑖‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝑁 = (le‘𝑅) & ⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) & ⊢ (𝜑 → ⊗ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) & ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) & ⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), ✚ 〉, 〈(.r‘ndx), ∙ 〉} ∪ {〈(Scalar‘ndx), 𝐺〉, 〈( ·𝑠 ‘ndx), ⊗ 〉, 〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉})) | ||
| Theorem | imasbas 17524 | The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) | ||
| Theorem | imasds 17525* | The distance function of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) ⇒ ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) | ||
| Theorem | imasdsfn 17526 | The distance function is a function on the base set. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) ⇒ ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) | ||
| Theorem | imasdsval 17527* | The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ⇒ ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) | ||
| Theorem | imasdsval2 17528* | The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} & ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) ⇒ ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) | ||
| Theorem | imasplusg 17529* | The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) | ||
| Theorem | imasmulr 17530* | The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | ||
| Theorem | imassca 17531 | The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) ⇒ ⊢ (𝜑 → 𝐺 = (Scalar‘𝑈)) | ||
| Theorem | imasvsca 17532* | The scalar multiplication operation of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) ⇒ ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) | ||
| Theorem | imasip 17533* | The inner product of an image structure. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ , = (·𝑖‘𝑅) & ⊢ 𝐼 = (·𝑖‘𝑈) ⇒ ⊢ (𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) | ||
| Theorem | imastset 17534 | The topology of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑂 = (TopSet‘𝑈) ⇒ ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) | ||
| Theorem | imasle 17535 | The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝑁 = (le‘𝑅) & ⊢ ≤ = (le‘𝑈) ⇒ ⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) | ||
| Theorem | f1ocpbllem 17536 | Lemma for f1ocpbl 17537. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | f1ocpbl 17537 | An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) | ||
| Theorem | f1ovscpbl 17538 | An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) | ||
| Theorem | f1olecpbl 17539 | An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) | ||
| Theorem | imasaddfnlem 17540* | The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
| Theorem | imasaddvallem 17541* | The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasaddflem 17542* | The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | imasaddfn 17543* | The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
| Theorem | imasaddval 17544* | The value of an image structure's group operation. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasaddf 17545* | The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | imasmulfn 17546* | The image structure's ring multiplication is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
| Theorem | imasmulval 17547* | The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasmulf 17548* | The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | imasvscafn 17549* | The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) ⇒ ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) | ||
| Theorem | imasvscaval 17550* | The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | imasvscaf 17551* | The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) | ||
| Theorem | imasless 17552 | The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ ≤ = (le‘𝑈) ⇒ ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) | ||
| Theorem | imasleval 17553* | The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ ≤ = (le‘𝑈) & ⊢ 𝑁 = (le‘𝑅) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)) | ||
| Theorem | qusval 17554* | Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | ||
| Theorem | quslem 17555* | The function in qusval 17554 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) | ||
| Theorem | qusin 17556 | Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | ||
| Theorem | qusbas 17557 | Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) | ||
| Theorem | quss 17558 | The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐾 = (Scalar‘𝑅) ⇒ ⊢ (𝜑 → 𝐾 = (Scalar‘𝑈)) | ||
| Theorem | divsfval 17559* | Value of the function in qusval 17554. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) | ||
| Theorem | ercpbllem 17560* | Lemma for ercpbl 17561. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) | ||
| Theorem | ercpbl 17561* | Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 + 𝑏) ∈ 𝑉) & ⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) | ||
| Theorem | erlecpbl 17562* | Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) | ||
| Theorem | qusaddvallem 17563* | Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | qusaddflem 17564* | The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
| Theorem | qusaddval 17565* | The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | qusaddf 17566* | The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
| Theorem | qusmulval 17567* | The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | qusmulf 17568* | The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
| Theorem | fnpr2o 17569 | Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) | ||
| Theorem | fnpr2ob 17570 | Biconditional version of fnpr2o 17569. (Contributed by Jim Kingdon, 27-Sep-2023.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) | ||
| Theorem | fvpr0o 17571 | The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) | ||
| Theorem | fvpr1o 17572 | The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘1o) = 𝐵) | ||
| Theorem | fvprif 17573 | The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 2o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)) | ||
| Theorem | xpsfrnel 17574* | Elementhood in the target space of the function 𝐹 appearing in xpsval 17582. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐺 ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)) | ||
| Theorem | xpsfeq 17575 | A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) | ||
| Theorem | xpsfrnel2 17576* | Elementhood in the target space of the function 𝐹 appearing in xpsval 17582. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | xpscf 17577 | Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | ||
| Theorem | xpsfval 17578* | The value of the function appearing in xpsval 17582. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) | ||
| Theorem | xpsff1o 17579* | The function appearing in xpsval 17582 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | ||
| Theorem | xpsfrn 17580* | A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | ||
| Theorem | xpsff1o2 17581* | The function appearing in xpsval 17582 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 | ||
| Theorem | xpsval 17582* | Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ⇒ ⊢ (𝜑 → 𝑇 = (◡𝐹 “s 𝑈)) | ||
| Theorem | xpsrnbas 17583* | The indexed structure product that appears in xpsval 17582 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ⇒ ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) | ||
| Theorem | xpsbas 17584 | The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) | ||
| Theorem | xpsaddlem 17585* | Lemma for xpsadd 17586 and xpsmul 17587. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (𝐸‘𝑅) & ⊢ × = (𝐸‘𝑆) & ⊢ ∙ = (𝐸‘𝑇) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) & ⊢ 𝑈 = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) & ⊢ ((𝜑 ∧ {〈∅, 𝐴〉, 〈1o, 𝐵〉} ∈ ran 𝐹 ∧ {〈∅, 𝐶〉, 〈1o, 𝐷〉} ∈ ran 𝐹) → ((◡𝐹‘{〈∅, 𝐴〉, 〈1o, 𝐵〉}) ∙ (◡𝐹‘{〈∅, 𝐶〉, 〈1o, 𝐷〉})) = (◡𝐹‘({〈∅, 𝐴〉, 〈1o, 𝐵〉} (𝐸‘𝑈){〈∅, 𝐶〉, 〈1o, 𝐷〉}))) & ⊢ (({〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o ∧ {〈∅, 𝐴〉, 〈1o, 𝐵〉} ∈ (Base‘𝑈) ∧ {〈∅, 𝐶〉, 〈1o, 𝐷〉} ∈ (Base‘𝑈)) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉} (𝐸‘𝑈){〈∅, 𝐶〉, 〈1o, 𝐷〉}) = (𝑘 ∈ 2o ↦ (({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘𝑘)(𝐸‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))({〈∅, 𝐶〉, 〈1o, 𝐷〉}‘𝑘)))) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| Theorem | xpsadd 17586 | Value of the addition operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (+g‘𝑅) & ⊢ × = (+g‘𝑆) & ⊢ ∙ = (+g‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| Theorem | xpsmul 17587 | Value of the multiplication operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ ∙ = (.r‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
| Theorem | xpssca 17588 | Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) | ||
| Theorem | xpsvsca 17589 | Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ × = ( ·𝑠 ‘𝑆) & ⊢ ∙ = ( ·𝑠 ‘𝑇) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑋) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝐴 ∙ 〈𝐵, 𝐶〉) = 〈(𝐴 · 𝐵), (𝐴 × 𝐶)〉) | ||
| Theorem | xpsless 17590 | Closure of the ordering in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ≤ = (le‘𝑇) ⇒ ⊢ (𝜑 → ≤ ⊆ ((𝑋 × 𝑌) × (𝑋 × 𝑌))) | ||
| Theorem | xpsle 17591 | Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ≤ = (le‘𝑇) & ⊢ 𝑀 = (le‘𝑅) & ⊢ 𝑁 = (le‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ≤ 〈𝐶, 𝐷〉 ↔ (𝐴𝑀𝐶 ∧ 𝐵𝑁𝐷))) | ||
| Syntax | cmre 17592 | The class of Moore systems. |
| class Moore | ||
| Syntax | cmrc 17593 | The class function generating Moore closures. |
| class mrCls | ||
| Syntax | cmri 17594 | mrInd is a class function which takes a Moore system to its set of independent sets. |
| class mrInd | ||
| Syntax | cacs 17595 | The class of algebraic closure (Moore) systems. |
| class ACS | ||
| Definition | df-mre 17596* |
Define a Moore collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 23014) and vector spaces (lssmre 20921)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 17600, mresspw 17602, mre1cl 17604 and mreintcl 17605 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17610); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 17611. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
| ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | ||
| Definition | df-mrc 17597* |
Define the Moore closure of a generating set, which is the smallest
closed set containing all generating elements. Definition of Moore
closure in [Schechter] p. 79. This
generalizes topological closure
(mrccls 23015) and linear span (mrclsp 20944).
A Moore closure operation 𝑁 is (1) extensive, i.e., 𝑥 ⊆ (𝑁‘𝑥) for all subsets 𝑥 of the base set (mrcssid 17627), (2) isotone, i.e., 𝑥 ⊆ 𝑦 implies that (𝑁‘𝑥) ⊆ (𝑁‘𝑦) for all subsets 𝑥 and 𝑦 of the base set (mrcss 17626), and (3) idempotent, i.e., (𝑁‘(𝑁‘𝑥)) = (𝑁‘𝑥) for all subsets 𝑥 of the base set (mrcidm 17629.) Operators satisfying these three properties are in bijective correspondence with Moore collections, so these properties may be used to give an alternate characterization of a Moore collection by providing a closure operation 𝑁 on the set of subsets of a given base set which satisfies (1), (2), and (3); the closed sets can be recovered as those sets which equal their closures (Section 4.5 in [Schechter] p. 82.) (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
| ⊢ mrCls = (𝑐 ∈ ∪ ran Moore ↦ (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) | ||
| Definition | df-mri 17598* | In a Moore system, a set is independent if no element of the set is in the closure of the set with the element removed (Section 0.6 in [Gratzer] p. 27; Definition 4.1.1 in [FaureFrolicher] p. 83.) mrInd is a class function which takes a Moore system to its set of independent sets. (Contributed by David Moews, 1-May-2017.) |
| ⊢ mrInd = (𝑐 ∈ ∪ ran Moore ↦ {𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))}) | ||
| Definition | df-acs 17599* | An important subclass of Moore systems are those which can be interpreted as closure under some collection of operators of finite arity (the collection itself is not required to be finite). These are termed algebraic closure systems; similar to definition (A) of an algebraic closure system in [Schechter] p. 84, but to avoid the complexity of an arbitrary mixed collection of functions of various arities (especially if the axiom of infinity omex 9655 is to be avoided), we consider a single function defined on finite sets instead. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) | ||
| Theorem | ismre 17600* | Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |