MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs Structured version   Visualization version   GIF version

Theorem isacs 17549
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
Distinct variable groups:   𝐶,𝑓,𝑠   𝑓,𝑋,𝑠

Proof of Theorem isacs
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6852 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V)
2 elfvex 6852 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))) → 𝑋 ∈ V)
4 fveq2 6817 . . . . . 6 (𝑥 = 𝑋 → (Moore‘𝑥) = (Moore‘𝑋))
5 pweq 4562 . . . . . . . . 9 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
65, 5feq23d 6642 . . . . . . . 8 (𝑥 = 𝑋 → (𝑓:𝒫 𝑥⟶𝒫 𝑥𝑓:𝒫 𝑋⟶𝒫 𝑋))
75raleqdv 3290 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
86, 7anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
98exbidv 1922 . . . . . 6 (𝑥 = 𝑋 → (∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
104, 9rabeqbidv 3411 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} = {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
11 df-acs 17483 . . . . 5 ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
12 fvex 6830 . . . . . 6 (Moore‘𝑋) ∈ V
1312rabex 5275 . . . . 5 {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} ∈ V
1410, 11, 13fvmpt 6924 . . . 4 (𝑋 ∈ V → (ACS‘𝑋) = {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
1514eleq2d 2815 . . 3 (𝑋 ∈ V → (𝐶 ∈ (ACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}))
16 eleq2 2818 . . . . . . . 8 (𝑐 = 𝐶 → (𝑠𝑐𝑠𝐶))
1716bibi1d 343 . . . . . . 7 (𝑐 = 𝐶 → ((𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ (𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
1817ralbidv 3153 . . . . . 6 (𝑐 = 𝐶 → (∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
1918anbi2d 630 . . . . 5 (𝑐 = 𝐶 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2019exbidv 1922 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2120elrab 3645 . . 3 (𝐶 ∈ {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2215, 21bitrdi 287 . 2 (𝑋 ∈ V → (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))))
231, 3, 22pm5.21nii 378 1 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  cin 3899  wss 3900  𝒫 cpw 4548   cuni 4857  cima 5617  wf 6473  cfv 6477  Fincfn 8864  Moorecmre 17476  ACScacs 17479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-acs 17483
This theorem is referenced by:  acsmre  17550  isacs2  17551  isacs1i  17555  mreacs  17556
  Copyright terms: Public domain W3C validator