Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs Structured version   Visualization version   GIF version

Theorem isacs 16922
 Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
Distinct variable groups:   𝐶,𝑓,𝑠   𝑓,𝑋,𝑠

Proof of Theorem isacs
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6694 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V)
2 elfvex 6694 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
32adantr 484 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))) → 𝑋 ∈ V)
4 fveq2 6661 . . . . . 6 (𝑥 = 𝑋 → (Moore‘𝑥) = (Moore‘𝑋))
5 pweq 4538 . . . . . . . . 9 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
65, 5feq23d 6498 . . . . . . . 8 (𝑥 = 𝑋 → (𝑓:𝒫 𝑥⟶𝒫 𝑥𝑓:𝒫 𝑋⟶𝒫 𝑋))
75raleqdv 3402 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
86, 7anbi12d 633 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
98exbidv 1923 . . . . . 6 (𝑥 = 𝑋 → (∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
104, 9rabeqbidv 3471 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} = {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
11 df-acs 16860 . . . . 5 ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
12 fvex 6674 . . . . . 6 (Moore‘𝑋) ∈ V
1312rabex 5221 . . . . 5 {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} ∈ V
1410, 11, 13fvmpt 6759 . . . 4 (𝑋 ∈ V → (ACS‘𝑋) = {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
1514eleq2d 2901 . . 3 (𝑋 ∈ V → (𝐶 ∈ (ACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}))
16 eleq2 2904 . . . . . . . 8 (𝑐 = 𝐶 → (𝑠𝑐𝑠𝐶))
1716bibi1d 347 . . . . . . 7 (𝑐 = 𝐶 → ((𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ (𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
1817ralbidv 3192 . . . . . 6 (𝑐 = 𝐶 → (∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
1918anbi2d 631 . . . . 5 (𝑐 = 𝐶 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2019exbidv 1923 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2120elrab 3666 . . 3 (𝐶 ∈ {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2215, 21syl6bb 290 . 2 (𝑋 ∈ V → (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))))
231, 3, 22pm5.21nii 383 1 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115  ∀wral 3133  {crab 3137  Vcvv 3480   ∩ cin 3918   ⊆ wss 3919  𝒫 cpw 4522  ∪ cuni 4824   “ cima 5545  ⟶wf 6339  ‘cfv 6343  Fincfn 8505  Moorecmre 16853  ACScacs 16856 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-acs 16860 This theorem is referenced by:  acsmre  16923  isacs2  16924  isacs1i  16928  mreacs  16929
 Copyright terms: Public domain W3C validator