MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs Structured version   Visualization version   GIF version

Theorem isacs 17619
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
Distinct variable groups:   𝐶,𝑓,𝑠   𝑓,𝑋,𝑠

Proof of Theorem isacs
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6899 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V)
2 elfvex 6899 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))) → 𝑋 ∈ V)
4 fveq2 6861 . . . . . 6 (𝑥 = 𝑋 → (Moore‘𝑥) = (Moore‘𝑋))
5 pweq 4580 . . . . . . . . 9 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
65, 5feq23d 6686 . . . . . . . 8 (𝑥 = 𝑋 → (𝑓:𝒫 𝑥⟶𝒫 𝑥𝑓:𝒫 𝑋⟶𝒫 𝑋))
75raleqdv 3301 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
86, 7anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
98exbidv 1921 . . . . . 6 (𝑥 = 𝑋 → (∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
104, 9rabeqbidv 3427 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} = {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
11 df-acs 17557 . . . . 5 ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
12 fvex 6874 . . . . . 6 (Moore‘𝑋) ∈ V
1312rabex 5297 . . . . 5 {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} ∈ V
1410, 11, 13fvmpt 6971 . . . 4 (𝑋 ∈ V → (ACS‘𝑋) = {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
1514eleq2d 2815 . . 3 (𝑋 ∈ V → (𝐶 ∈ (ACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}))
16 eleq2 2818 . . . . . . . 8 (𝑐 = 𝐶 → (𝑠𝑐𝑠𝐶))
1716bibi1d 343 . . . . . . 7 (𝑐 = 𝐶 → ((𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ (𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
1817ralbidv 3157 . . . . . 6 (𝑐 = 𝐶 → (∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))
1918anbi2d 630 . . . . 5 (𝑐 = 𝐶 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2019exbidv 1921 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2120elrab 3662 . . 3 (𝐶 ∈ {𝑐 ∈ (Moore‘𝑋) ∣ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))} ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
2215, 21bitrdi 287 . 2 (𝑋 ∈ V → (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))))
231, 3, 22pm5.21nii 378 1 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cima 5644  wf 6510  cfv 6514  Fincfn 8921  Moorecmre 17550  ACScacs 17553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-acs 17557
This theorem is referenced by:  acsmre  17620  isacs2  17621  isacs1i  17625  mreacs  17626
  Copyright terms: Public domain W3C validator