![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > taylfvallem1 | Structured version Visualization version GIF version |
Description: Lemma for taylfval 25853. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
taylfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
taylfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
taylfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
taylfval.n | ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
taylfval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
Ref | Expression |
---|---|
taylfvallem1 | ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylfval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | 1 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ}) |
3 | cnex 11187 | . . . . . . . 8 ⊢ ℂ ∈ V | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂ ∈ V) |
5 | taylfval.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
6 | taylfval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
7 | elpm2r 8835 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
8 | 4, 1, 5, 6, 7 | syl22anc 838 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
9 | 8 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
10 | simpr 486 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) | |
11 | 10 | elin2d 4198 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ) |
12 | 10 | elin1d 4197 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁)) |
13 | 0xr 11257 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
14 | taylfval.n | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
15 | nn0re 12477 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
16 | 15 | rexrd 11260 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
17 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑁 = +∞ → 𝑁 = +∞) | |
18 | pnfxr 11264 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
19 | 17, 18 | eqeltrdi 2842 | . . . . . . . . . . . 12 ⊢ (𝑁 = +∞ → 𝑁 ∈ ℝ*) |
20 | 16, 19 | jaoi 856 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → 𝑁 ∈ ℝ*) |
21 | 14, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℝ*) |
22 | 21 | ad2antrr 725 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*) |
23 | elicc1 13364 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) | |
24 | 13, 22, 23 | sylancr 588 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
25 | 12, 24 | mpbid 231 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)) |
26 | 25 | simp2d 1144 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘) |
27 | elnn0z 12567 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘)) | |
28 | 11, 26, 27 | sylanbrc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0) |
29 | dvnf 25426 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) | |
30 | 2, 9, 28, 29 | syl3anc 1372 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) |
31 | taylfval.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | |
32 | 31 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
33 | 30, 32 | ffvelcdmd 7083 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ) |
34 | 28 | faccld 14240 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ) |
35 | 34 | nncnd 12224 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ) |
36 | 34 | nnne0d 12258 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0) |
37 | 33, 35, 36 | divcld 11986 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ) |
38 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑋 ∈ ℂ) | |
39 | 5 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹:𝐴⟶ℂ) |
40 | dvnbss 25427 | . . . . . . . 8 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) | |
41 | 2, 9, 28, 40 | syl3anc 1372 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) |
42 | 39, 41 | fssdmd 6733 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ 𝐴) |
43 | recnprss 25403 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
44 | 1, 43 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
45 | 6, 44 | sstrd 3991 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
46 | 45 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐴 ⊆ ℂ) |
47 | 42, 46 | sstrd 3991 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ ℂ) |
48 | 47, 32 | sseldd 3982 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ ℂ) |
49 | 38, 48 | subcld 11567 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑋 − 𝐵) ∈ ℂ) |
50 | 49, 28 | expcld 14107 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑋 − 𝐵)↑𝑘) ∈ ℂ) |
51 | 37, 50 | mulcld 11230 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∩ cin 3946 ⊆ wss 3947 {cpr 4629 class class class wbr 5147 dom cdm 5675 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ↑pm cpm 8817 ℂcc 11104 ℝcr 11105 0cc0 11106 · cmul 11111 +∞cpnf 11241 ℝ*cxr 11243 ≤ cle 11245 − cmin 11440 / cdiv 11867 ℕ0cn0 12468 ℤcz 12554 [,]cicc 13323 ↑cexp 14023 !cfa 14229 D𝑛 cdvn 25363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-fz 13481 df-seq 13963 df-exp 14024 df-fac 14230 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-rest 17364 df-topn 17365 df-topgen 17385 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-cnfld 20930 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-lp 22622 df-perf 22623 df-cnp 22714 df-haus 22801 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-xms 23808 df-ms 23809 df-limc 25365 df-dv 25366 df-dvn 25367 |
This theorem is referenced by: taylfvallem 25852 taylf 25855 taylplem2 25858 taylpfval 25859 |
Copyright terms: Public domain | W3C validator |