MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfvallem1 Structured version   Visualization version   GIF version

Theorem taylfvallem1 25851
Description: Lemma for taylfval 25853. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
Assertion
Ref Expression
taylfvallem1 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylfvallem1
StepHypRef Expression
1 taylfval.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
21ad2antrr 725 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ})
3 cnex 11187 . . . . . . . 8 ℂ ∈ V
43a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
5 taylfval.f . . . . . . 7 (𝜑𝐹:𝐴⟶ℂ)
6 taylfval.a . . . . . . 7 (𝜑𝐴𝑆)
7 elpm2r 8835 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
84, 1, 5, 6, 7syl22anc 838 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
98ad2antrr 725 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
10 simpr 486 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
1110elin2d 4198 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ)
1210elin1d 4197 . . . . . . . 8 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁))
13 0xr 11257 . . . . . . . . 9 0 ∈ ℝ*
14 taylfval.n . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
15 nn0re 12477 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1615rexrd 11260 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
17 id 22 . . . . . . . . . . . . 13 (𝑁 = +∞ → 𝑁 = +∞)
18 pnfxr 11264 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1917, 18eqeltrdi 2842 . . . . . . . . . . . 12 (𝑁 = +∞ → 𝑁 ∈ ℝ*)
2016, 19jaoi 856 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 = +∞) → 𝑁 ∈ ℝ*)
2114, 20syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ*)
2221ad2antrr 725 . . . . . . . . 9 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*)
23 elicc1 13364 . . . . . . . . 9 ((0 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
2413, 22, 23sylancr 588 . . . . . . . 8 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
2512, 24mpbid 231 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁))
2625simp2d 1144 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘)
27 elnn0z 12567 . . . . . 6 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
2811, 26, 27sylanbrc 584 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0)
29 dvnf 25426 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
302, 9, 28, 29syl3anc 1372 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
31 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3231adantlr 714 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3330, 32ffvelcdmd 7083 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
3428faccld 14240 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ)
3534nncnd 12224 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ)
3634nnne0d 12258 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0)
3733, 35, 36divcld 11986 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
38 simplr 768 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑋 ∈ ℂ)
395ad2antrr 725 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹:𝐴⟶ℂ)
40 dvnbss 25427 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹)
412, 9, 28, 40syl3anc 1372 . . . . . . 7 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹)
4239, 41fssdmd 6733 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ 𝐴)
43 recnprss 25403 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
441, 43syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
456, 44sstrd 3991 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
4645ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐴 ⊆ ℂ)
4742, 46sstrd 3991 . . . . 5 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ ℂ)
4847, 32sseldd 3982 . . . 4 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ ℂ)
4938, 48subcld 11567 . . 3 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑋𝐵) ∈ ℂ)
5049, 28expcld 14107 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑋𝐵)↑𝑘) ∈ ℂ)
5137, 50mulcld 11230 1 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  cin 3946  wss 3947  {cpr 4629   class class class wbr 5147  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7404  pm cpm 8817  cc 11104  cr 11105  0cc0 11106   · cmul 11111  +∞cpnf 11241  *cxr 11243  cle 11245  cmin 11440   / cdiv 11867  0cn0 12468  cz 12554  [,]cicc 13323  cexp 14023  !cfa 14229   D𝑛 cdvn 25363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-fz 13481  df-seq 13963  df-exp 14024  df-fac 14230  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-rest 17364  df-topn 17365  df-topgen 17385  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cnp 22714  df-haus 22801  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-limc 25365  df-dv 25366  df-dvn 25367
This theorem is referenced by:  taylfvallem  25852  taylf  25855  taylplem2  25858  taylpfval  25859
  Copyright terms: Public domain W3C validator