|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > taylfvallem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for taylfval 26400. (Contributed by Mario Carneiro, 30-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| taylfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | 
| taylfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | 
| taylfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | 
| taylfval.n | ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | 
| taylfval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | 
| Ref | Expression | 
|---|---|
| taylfvallem1 | ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | taylfval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ}) | 
| 3 | cnex 11236 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂ ∈ V) | 
| 5 | taylfval.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 6 | taylfval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 7 | elpm2r 8885 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
| 8 | 4, 1, 5, 6, 7 | syl22anc 839 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) | 
| 9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | 
| 10 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) | |
| 11 | 10 | elin2d 4205 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ) | 
| 12 | 10 | elin1d 4204 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁)) | 
| 13 | 0xr 11308 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 14 | taylfval.n | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 15 | nn0re 12535 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 16 | 15 | rexrd 11311 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) | 
| 17 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑁 = +∞ → 𝑁 = +∞) | |
| 18 | pnfxr 11315 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
| 19 | 17, 18 | eqeltrdi 2849 | . . . . . . . . . . . 12 ⊢ (𝑁 = +∞ → 𝑁 ∈ ℝ*) | 
| 20 | 16, 19 | jaoi 858 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → 𝑁 ∈ ℝ*) | 
| 21 | 14, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℝ*) | 
| 22 | 21 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*) | 
| 23 | elicc1 13431 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) | |
| 24 | 13, 22, 23 | sylancr 587 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) | 
| 25 | 12, 24 | mpbid 232 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)) | 
| 26 | 25 | simp2d 1144 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘) | 
| 27 | elnn0z 12626 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘)) | |
| 28 | 11, 26, 27 | sylanbrc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0) | 
| 29 | dvnf 25963 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) | |
| 30 | 2, 9, 28, 29 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) | 
| 31 | taylfval.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | |
| 32 | 31 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | 
| 33 | 30, 32 | ffvelcdmd 7105 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ) | 
| 34 | 28 | faccld 14323 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ) | 
| 35 | 34 | nncnd 12282 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ) | 
| 36 | 34 | nnne0d 12316 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0) | 
| 37 | 33, 35, 36 | divcld 12043 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ) | 
| 38 | simplr 769 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑋 ∈ ℂ) | |
| 39 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹:𝐴⟶ℂ) | 
| 40 | dvnbss 25964 | . . . . . . . 8 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) | |
| 41 | 2, 9, 28, 40 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) | 
| 42 | 39, 41 | fssdmd 6754 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ 𝐴) | 
| 43 | recnprss 25939 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 44 | 1, 43 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 45 | 6, 44 | sstrd 3994 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | 
| 46 | 45 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐴 ⊆ ℂ) | 
| 47 | 42, 46 | sstrd 3994 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ ℂ) | 
| 48 | 47, 32 | sseldd 3984 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ ℂ) | 
| 49 | 38, 48 | subcld 11620 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑋 − 𝐵) ∈ ℂ) | 
| 50 | 49, 28 | expcld 14186 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑋 − 𝐵)↑𝑘) ∈ ℂ) | 
| 51 | 37, 50 | mulcld 11281 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 {cpr 4628 class class class wbr 5143 dom cdm 5685 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑pm cpm 8867 ℂcc 11153 ℝcr 11154 0cc0 11155 · cmul 11160 +∞cpnf 11292 ℝ*cxr 11294 ≤ cle 11296 − cmin 11492 / cdiv 11920 ℕ0cn0 12526 ℤcz 12613 [,]cicc 13390 ↑cexp 14102 !cfa 14312 D𝑛 cdvn 25899 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-fac 14313 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cnp 23236 df-haus 23323 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-limc 25901 df-dv 25902 df-dvn 25903 | 
| This theorem is referenced by: taylfvallem 26399 taylf 26402 taylplem2 26405 taylpfval 26406 | 
| Copyright terms: Public domain | W3C validator |