![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > taylfvallem1 | Structured version Visualization version GIF version |
Description: Lemma for taylfval 25718. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
taylfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
taylfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
taylfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
taylfval.n | ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
taylfval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
Ref | Expression |
---|---|
taylfvallem1 | ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylfval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | 1 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ}) |
3 | cnex 11132 | . . . . . . . 8 ⊢ ℂ ∈ V | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂ ∈ V) |
5 | taylfval.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
6 | taylfval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
7 | elpm2r 8783 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
8 | 4, 1, 5, 6, 7 | syl22anc 837 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
9 | 8 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
10 | simpr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) | |
11 | 10 | elin2d 4159 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ) |
12 | 10 | elin1d 4158 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁)) |
13 | 0xr 11202 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
14 | taylfval.n | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
15 | nn0re 12422 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
16 | 15 | rexrd 11205 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
17 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑁 = +∞ → 𝑁 = +∞) | |
18 | pnfxr 11209 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
19 | 17, 18 | eqeltrdi 2846 | . . . . . . . . . . . 12 ⊢ (𝑁 = +∞ → 𝑁 ∈ ℝ*) |
20 | 16, 19 | jaoi 855 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → 𝑁 ∈ ℝ*) |
21 | 14, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℝ*) |
22 | 21 | ad2antrr 724 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*) |
23 | elicc1 13308 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) | |
24 | 13, 22, 23 | sylancr 587 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
25 | 12, 24 | mpbid 231 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)) |
26 | 25 | simp2d 1143 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘) |
27 | elnn0z 12512 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘)) | |
28 | 11, 26, 27 | sylanbrc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0) |
29 | dvnf 25291 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) | |
30 | 2, 9, 28, 29 | syl3anc 1371 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) |
31 | taylfval.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | |
32 | 31 | adantlr 713 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
33 | 30, 32 | ffvelcdmd 7036 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ) |
34 | 28 | faccld 14184 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ) |
35 | 34 | nncnd 12169 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ) |
36 | 34 | nnne0d 12203 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0) |
37 | 33, 35, 36 | divcld 11931 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ) |
38 | simplr 767 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑋 ∈ ℂ) | |
39 | 5 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹:𝐴⟶ℂ) |
40 | dvnbss 25292 | . . . . . . . 8 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) | |
41 | 2, 9, 28, 40 | syl3anc 1371 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) |
42 | 39, 41 | fssdmd 6687 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ 𝐴) |
43 | recnprss 25268 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
44 | 1, 43 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
45 | 6, 44 | sstrd 3954 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
46 | 45 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐴 ⊆ ℂ) |
47 | 42, 46 | sstrd 3954 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ ℂ) |
48 | 47, 32 | sseldd 3945 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ ℂ) |
49 | 38, 48 | subcld 11512 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑋 − 𝐵) ∈ ℂ) |
50 | 49, 28 | expcld 14051 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑋 − 𝐵)↑𝑘) ∈ ℂ) |
51 | 37, 50 | mulcld 11175 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∩ cin 3909 ⊆ wss 3910 {cpr 4588 class class class wbr 5105 dom cdm 5633 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑pm cpm 8766 ℂcc 11049 ℝcr 11050 0cc0 11051 · cmul 11056 +∞cpnf 11186 ℝ*cxr 11188 ≤ cle 11190 − cmin 11385 / cdiv 11812 ℕ0cn0 12413 ℤcz 12499 [,]cicc 13267 ↑cexp 13967 !cfa 14173 D𝑛 cdvn 25228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-icc 13271 df-fz 13425 df-seq 13907 df-exp 13968 df-fac 14174 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-mulr 17147 df-starv 17148 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-rest 17304 df-topn 17305 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cnp 22579 df-haus 22666 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-limc 25230 df-dv 25231 df-dvn 25232 |
This theorem is referenced by: taylfvallem 25717 taylf 25720 taylplem2 25723 taylpfval 25724 |
Copyright terms: Public domain | W3C validator |