| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > taylfvallem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for taylfval 26273. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| taylfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| taylfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| taylfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| taylfval.n | ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| taylfval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| Ref | Expression |
|---|---|
| taylfvallem1 | ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taylfval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ}) |
| 3 | cnex 11156 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂ ∈ V) |
| 5 | taylfval.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 6 | taylfval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 7 | elpm2r 8821 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
| 8 | 4, 1, 5, 6, 7 | syl22anc 838 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 9 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 10 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) | |
| 11 | 10 | elin2d 4171 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ) |
| 12 | 10 | elin1d 4170 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁)) |
| 13 | 0xr 11228 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 14 | taylfval.n | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 15 | nn0re 12458 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 16 | 15 | rexrd 11231 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
| 17 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑁 = +∞ → 𝑁 = +∞) | |
| 18 | pnfxr 11235 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
| 19 | 17, 18 | eqeltrdi 2837 | . . . . . . . . . . . 12 ⊢ (𝑁 = +∞ → 𝑁 ∈ ℝ*) |
| 20 | 16, 19 | jaoi 857 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → 𝑁 ∈ ℝ*) |
| 21 | 14, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℝ*) |
| 22 | 21 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*) |
| 23 | elicc1 13357 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) | |
| 24 | 13, 22, 23 | sylancr 587 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
| 25 | 12, 24 | mpbid 232 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)) |
| 26 | 25 | simp2d 1143 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘) |
| 27 | elnn0z 12549 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘)) | |
| 28 | 11, 26, 27 | sylanbrc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0) |
| 29 | dvnf 25836 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) | |
| 30 | 2, 9, 28, 29 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) |
| 31 | taylfval.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | |
| 32 | 31 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 33 | 30, 32 | ffvelcdmd 7060 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ) |
| 34 | 28 | faccld 14256 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ) |
| 35 | 34 | nncnd 12209 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ) |
| 36 | 34 | nnne0d 12243 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0) |
| 37 | 33, 35, 36 | divcld 11965 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ) |
| 38 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑋 ∈ ℂ) | |
| 39 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹:𝐴⟶ℂ) |
| 40 | dvnbss 25837 | . . . . . . . 8 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) | |
| 41 | 2, 9, 28, 40 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ dom 𝐹) |
| 42 | 39, 41 | fssdmd 6709 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ 𝐴) |
| 43 | recnprss 25812 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 44 | 1, 43 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 45 | 6, 44 | sstrd 3960 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 46 | 45 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐴 ⊆ ℂ) |
| 47 | 42, 46 | sstrd 3960 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → dom ((𝑆 D𝑛 𝐹)‘𝑘) ⊆ ℂ) |
| 48 | 47, 32 | sseldd 3950 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ ℂ) |
| 49 | 38, 48 | subcld 11540 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑋 − 𝐵) ∈ ℂ) |
| 50 | 49, 28 | expcld 14118 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑋 − 𝐵)↑𝑘) ∈ ℂ) |
| 51 | 37, 50 | mulcld 11201 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 {cpr 4594 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕ0cn0 12449 ℤcz 12536 [,]cicc 13316 ↑cexp 14033 !cfa 14245 D𝑛 cdvn 25772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-seq 13974 df-exp 14034 df-fac 14246 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cnp 23122 df-haus 23209 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-limc 25774 df-dv 25775 df-dvn 25776 |
| This theorem is referenced by: taylfvallem 26272 taylf 26275 taylplem2 26278 taylpfval 26279 |
| Copyright terms: Public domain | W3C validator |