Step | Hyp | Ref
| Expression |
1 | | carea 26211 |
. 2
class
area |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vt |
. . . . . . . . 9
setvar 𝑡 |
4 | 3 | cv 1539 |
. . . . . . . 8
class 𝑡 |
5 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
6 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
7 | 6 | csn 4573 |
. . . . . . . 8
class {𝑥} |
8 | 4, 7 | cima 5623 |
. . . . . . 7
class (𝑡 “ {𝑥}) |
9 | | cvol 24733 |
. . . . . . . . 9
class
vol |
10 | 9 | ccnv 5619 |
. . . . . . . 8
class ◡vol |
11 | | cr 10971 |
. . . . . . . 8
class
ℝ |
12 | 10, 11 | cima 5623 |
. . . . . . 7
class (◡vol “ ℝ) |
13 | 8, 12 | wcel 2105 |
. . . . . 6
wff (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) |
14 | 13, 5, 11 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) |
15 | 8, 9 | cfv 6479 |
. . . . . . 7
class
(vol‘(𝑡
“ {𝑥})) |
16 | 5, 11, 15 | cmpt 5175 |
. . . . . 6
class (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) |
17 | | cibl 24887 |
. . . . . 6
class
𝐿1 |
18 | 16, 17 | wcel 2105 |
. . . . 5
wff (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1 |
19 | 14, 18 | wa 396 |
. . . 4
wff
(∀𝑥 ∈
ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1) |
20 | 11, 11 | cxp 5618 |
. . . . 5
class (ℝ
× ℝ) |
21 | 20 | cpw 4547 |
. . . 4
class 𝒫
(ℝ × ℝ) |
22 | 19, 3, 21 | crab 3403 |
. . 3
class {𝑡 ∈ 𝒫 (ℝ
× ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1)} |
23 | 2 | cv 1539 |
. . . . . 6
class 𝑠 |
24 | 23, 7 | cima 5623 |
. . . . 5
class (𝑠 “ {𝑥}) |
25 | 24, 9 | cfv 6479 |
. . . 4
class
(vol‘(𝑠
“ {𝑥})) |
26 | 5, 11, 25 | citg 24888 |
. . 3
class
∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 |
27 | 2, 22, 26 | cmpt 5175 |
. 2
class (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ)
∣ (∀𝑥 ∈
ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
28 | 1, 27 | wceq 1540 |
1
wff area =
(𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ
× ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |