MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmarea Structured version   Visualization version   GIF version

Theorem dmarea 25449
Description: The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dmarea (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmarea
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgex 24286 . . . 4 ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V
2 df-area 25448 . . . 4 area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
31, 2dmmpti 6488 . . 3 dom area = {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)}
43eleq2i 2908 . 2 (𝐴 ∈ dom area ↔ 𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)})
5 imaeq1 5921 . . . . . 6 (𝑡 = 𝐴 → (𝑡 “ {𝑥}) = (𝐴 “ {𝑥}))
65eleq1d 2901 . . . . 5 (𝑡 = 𝐴 → ((𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
76ralbidv 3201 . . . 4 (𝑡 = 𝐴 → (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
85fveq2d 6670 . . . . . 6 (𝑡 = 𝐴 → (vol‘(𝑡 “ {𝑥})) = (vol‘(𝐴 “ {𝑥})))
98mpteq2dv 5158 . . . . 5 (𝑡 = 𝐴 → (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))))
109eleq1d 2901 . . . 4 (𝑡 = 𝐴 → ((𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1 ↔ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
117, 10anbi12d 630 . . 3 (𝑡 = 𝐴 → ((∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1) ↔ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1211elrab 3683 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↔ (𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
13 reex 10620 . . . . . 6 ℝ ∈ V
1413, 13xpex 7468 . . . . 5 (ℝ × ℝ) ∈ V
1514elpw2 5244 . . . 4 (𝐴 ∈ 𝒫 (ℝ × ℝ) ↔ 𝐴 ⊆ (ℝ × ℝ))
1615anbi1i 623 . . 3 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
17 3anass 1089 . . 3 ((𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1816, 17bitr4i 279 . 2 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
194, 12, 183bitri 298 1 (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  {crab 3146  wss 3939  𝒫 cpw 4541  {csn 4563  cmpt 5142   × cxp 5551  ccnv 5552  dom cdm 5553  cima 5556  cfv 6351  cr 10528  volcvol 23979  𝐿1cibl 24133  citg 24134  areacarea 25447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-fv 6359  df-sum 15036  df-itg 24139  df-area 25448
This theorem is referenced by:  areambl  25450  areass  25451  areaf  25453  areacirc  34854  arearect  39683  areaquad  39684
  Copyright terms: Public domain W3C validator