MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmarea Structured version   Visualization version   GIF version

Theorem dmarea 26012
Description: The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dmarea (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmarea
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgex 24840 . . . 4 ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V
2 df-area 26011 . . . 4 area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
31, 2dmmpti 6561 . . 3 dom area = {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)}
43eleq2i 2830 . 2 (𝐴 ∈ dom area ↔ 𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)})
5 imaeq1 5953 . . . . . 6 (𝑡 = 𝐴 → (𝑡 “ {𝑥}) = (𝐴 “ {𝑥}))
65eleq1d 2823 . . . . 5 (𝑡 = 𝐴 → ((𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
76ralbidv 3120 . . . 4 (𝑡 = 𝐴 → (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
85fveq2d 6760 . . . . . 6 (𝑡 = 𝐴 → (vol‘(𝑡 “ {𝑥})) = (vol‘(𝐴 “ {𝑥})))
98mpteq2dv 5172 . . . . 5 (𝑡 = 𝐴 → (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))))
109eleq1d 2823 . . . 4 (𝑡 = 𝐴 → ((𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1 ↔ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
117, 10anbi12d 630 . . 3 (𝑡 = 𝐴 → ((∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1) ↔ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1211elrab 3617 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↔ (𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
13 reex 10893 . . . . . 6 ℝ ∈ V
1413, 13xpex 7581 . . . . 5 (ℝ × ℝ) ∈ V
1514elpw2 5264 . . . 4 (𝐴 ∈ 𝒫 (ℝ × ℝ) ↔ 𝐴 ⊆ (ℝ × ℝ))
1615anbi1i 623 . . 3 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
17 3anass 1093 . . 3 ((𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1816, 17bitr4i 277 . 2 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
194, 12, 183bitri 296 1 (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883  𝒫 cpw 4530  {csn 4558  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  cima 5583  cfv 6418  cr 10801  volcvol 24532  𝐿1cibl 24686  citg 24687  areacarea 26010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-sum 15326  df-itg 24692  df-area 26011
This theorem is referenced by:  areambl  26013  areass  26014  areaf  26016  areacirc  35797  arearect  40962  areaquad  40963
  Copyright terms: Public domain W3C validator