MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmarea Structured version   Visualization version   GIF version

Theorem dmarea 26867
Description: The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dmarea (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmarea
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgex 25671 . . . 4 ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V
2 df-area 26866 . . . 4 area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
31, 2dmmpti 6662 . . 3 dom area = {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)}
43eleq2i 2820 . 2 (𝐴 ∈ dom area ↔ 𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)})
5 imaeq1 6026 . . . . . 6 (𝑡 = 𝐴 → (𝑡 “ {𝑥}) = (𝐴 “ {𝑥}))
65eleq1d 2813 . . . . 5 (𝑡 = 𝐴 → ((𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
76ralbidv 3156 . . . 4 (𝑡 = 𝐴 → (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
85fveq2d 6862 . . . . . 6 (𝑡 = 𝐴 → (vol‘(𝑡 “ {𝑥})) = (vol‘(𝐴 “ {𝑥})))
98mpteq2dv 5201 . . . . 5 (𝑡 = 𝐴 → (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))))
109eleq1d 2813 . . . 4 (𝑡 = 𝐴 → ((𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1 ↔ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
117, 10anbi12d 632 . . 3 (𝑡 = 𝐴 → ((∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1) ↔ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1211elrab 3659 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↔ (𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
13 reex 11159 . . . . . 6 ℝ ∈ V
1413, 13xpex 7729 . . . . 5 (ℝ × ℝ) ∈ V
1514elpw2 5289 . . . 4 (𝐴 ∈ 𝒫 (ℝ × ℝ) ↔ 𝐴 ⊆ (ℝ × ℝ))
1615anbi1i 624 . . 3 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
17 3anass 1094 . . 3 ((𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1816, 17bitr4i 278 . 2 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
194, 12, 183bitri 297 1 (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914  𝒫 cpw 4563  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  cima 5641  cfv 6511  cr 11067  volcvol 25364  𝐿1cibl 25518  citg 25519  areacarea 26865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-sum 15653  df-itg 25524  df-area 26866
This theorem is referenced by:  areambl  26868  areass  26869  areaf  26871  areacirc  37707  arearect  43204  areaquad  43205
  Copyright terms: Public domain W3C validator