MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmarea Structured version   Visualization version   GIF version

Theorem dmarea 25543
Description: The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dmarea (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmarea
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgex 24374 . . . 4 ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V
2 df-area 25542 . . . 4 area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
31, 2dmmpti 6464 . . 3 dom area = {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)}
43eleq2i 2881 . 2 (𝐴 ∈ dom area ↔ 𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)})
5 imaeq1 5891 . . . . . 6 (𝑡 = 𝐴 → (𝑡 “ {𝑥}) = (𝐴 “ {𝑥}))
65eleq1d 2874 . . . . 5 (𝑡 = 𝐴 → ((𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
76ralbidv 3162 . . . 4 (𝑡 = 𝐴 → (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ↔ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ)))
85fveq2d 6649 . . . . . 6 (𝑡 = 𝐴 → (vol‘(𝑡 “ {𝑥})) = (vol‘(𝐴 “ {𝑥})))
98mpteq2dv 5126 . . . . 5 (𝑡 = 𝐴 → (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))))
109eleq1d 2874 . . . 4 (𝑡 = 𝐴 → ((𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1 ↔ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
117, 10anbi12d 633 . . 3 (𝑡 = 𝐴 → ((∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1) ↔ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1211elrab 3628 . 2 (𝐴 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↔ (𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
13 reex 10617 . . . . . 6 ℝ ∈ V
1413, 13xpex 7456 . . . . 5 (ℝ × ℝ) ∈ V
1514elpw2 5212 . . . 4 (𝐴 ∈ 𝒫 (ℝ × ℝ) ↔ 𝐴 ⊆ (ℝ × ℝ))
1615anbi1i 626 . . 3 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
17 3anass 1092 . . 3 ((𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)))
1816, 17bitr4i 281 . 2 ((𝐴 ∈ 𝒫 (ℝ × ℝ) ∧ (∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
194, 12, 183bitri 300 1 (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  wss 3881  𝒫 cpw 4497  {csn 4525  cmpt 5110   × cxp 5517  ccnv 5518  dom cdm 5519  cima 5522  cfv 6324  cr 10525  volcvol 24067  𝐿1cibl 24221  citg 24222  areacarea 25541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-sum 15035  df-itg 24227  df-area 25542
This theorem is referenced by:  areambl  25544  areass  25545  areaf  25547  areacirc  35150  arearect  40165  areaquad  40166
  Copyright terms: Public domain W3C validator