![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfarea | Structured version Visualization version GIF version |
Description: Rewrite df-area 26461 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
dfarea | ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-area 26461 | . 2 ⊢ area = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | |
2 | itgex 25288 | . . . 4 ⊢ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V | |
3 | 2, 1 | dmmpti 6695 | . . 3 ⊢ dom area = {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} |
4 | 3 | mpteq1i 5245 | . 2 ⊢ (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
5 | 1, 4 | eqtr4i 2764 | 1 ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 𝒫 cpw 4603 {csn 4629 ↦ cmpt 5232 × cxp 5675 ◡ccnv 5676 dom cdm 5677 “ cima 5680 ‘cfv 6544 ℝcr 11109 volcvol 24980 𝐿1cibl 25134 ∫citg 25135 areacarea 26460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fn 6547 df-sum 15633 df-itg 25140 df-area 26461 |
This theorem is referenced by: areaf 26466 areaval 26469 |
Copyright terms: Public domain | W3C validator |