MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfarea Structured version   Visualization version   GIF version

Theorem dfarea 26917
Description: Rewrite df-area 26913 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dfarea area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
Distinct variable group:   𝑥,𝑠

Proof of Theorem dfarea
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-area 26913 . 2 area = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
2 itgex 25718 . . . 4 ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V
32, 1dmmpti 6633 . . 3 dom area = {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)}
43mpteq1i 5186 . 2 (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
51, 4eqtr4i 2759 1 area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  𝒫 cpw 4551  {csn 4577  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  cima 5624  cfv 6489  cr 11016  volcvol 25411  𝐿1cibl 25565  citg 25566  areacarea 26912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fn 6492  df-sum 15601  df-itg 25571  df-area 26913
This theorem is referenced by:  areaf  26918  areaval  26921
  Copyright terms: Public domain W3C validator