Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfarea | Structured version Visualization version GIF version |
Description: Rewrite df-area 25839 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
dfarea | ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-area 25839 | . 2 ⊢ area = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | |
2 | itgex 24668 | . . . 4 ⊢ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ V | |
3 | 2, 1 | dmmpti 6522 | . . 3 ⊢ dom area = {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} |
4 | 3 | mpteq1i 5145 | . 2 ⊢ (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) = (𝑠 ∈ {𝑦 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑦 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑦 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
5 | 1, 4 | eqtr4i 2768 | 1 ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 𝒫 cpw 4513 {csn 4541 ↦ cmpt 5135 × cxp 5549 ◡ccnv 5550 dom cdm 5551 “ cima 5554 ‘cfv 6380 ℝcr 10728 volcvol 24360 𝐿1cibl 24514 ∫citg 24515 areacarea 25838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fn 6383 df-sum 15250 df-itg 24520 df-area 25839 |
This theorem is referenced by: areaf 25844 areaval 25847 |
Copyright terms: Public domain | W3C validator |