![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asinval | Structured version Visualization version GIF version |
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
asinval | ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | oveq1 7438 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
3 | 2 | oveq2d 7447 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (1 − (𝑥↑2)) = (1 − (𝐴↑2))) |
4 | 3 | fveq2d 6911 | . . . . 5 ⊢ (𝑥 = 𝐴 → (√‘(1 − (𝑥↑2))) = (√‘(1 − (𝐴↑2)))) |
5 | 1, 4 | oveq12d 7449 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
6 | 5 | fveq2d 6911 | . . 3 ⊢ (𝑥 = 𝐴 → (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
7 | 6 | oveq2d 7447 | . 2 ⊢ (𝑥 = 𝐴 → (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
8 | df-asin 26923 | . 2 ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | |
9 | ovex 7464 | . 2 ⊢ (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ V | |
10 | 7, 8, 9 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 ici 11155 + caddc 11156 · cmul 11158 − cmin 11490 -cneg 11491 2c2 12319 ↑cexp 14099 √csqrt 15269 logclog 26611 arcsincasin 26920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-asin 26923 |
This theorem is referenced by: asinneg 26944 efiasin 26946 asinsin 26950 asin1 26952 asinbnd 26957 areacirclem4 37698 |
Copyright terms: Public domain | W3C validator |