Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asinval | Structured version Visualization version GIF version |
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
asinval | ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7279 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | oveq1 7278 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
3 | 2 | oveq2d 7287 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (1 − (𝑥↑2)) = (1 − (𝐴↑2))) |
4 | 3 | fveq2d 6775 | . . . . 5 ⊢ (𝑥 = 𝐴 → (√‘(1 − (𝑥↑2))) = (√‘(1 − (𝐴↑2)))) |
5 | 1, 4 | oveq12d 7289 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
6 | 5 | fveq2d 6775 | . . 3 ⊢ (𝑥 = 𝐴 → (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
7 | 6 | oveq2d 7287 | . 2 ⊢ (𝑥 = 𝐴 → (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
8 | df-asin 26013 | . 2 ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | |
9 | ovex 7304 | . 2 ⊢ (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ V | |
10 | 7, 8, 9 | fvmpt 6872 | 1 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 1c1 10873 ici 10874 + caddc 10875 · cmul 10877 − cmin 11205 -cneg 11206 2c2 12028 ↑cexp 13780 √csqrt 14942 logclog 25708 arcsincasin 26010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-asin 26013 |
This theorem is referenced by: asinneg 26034 efiasin 26036 asinsin 26040 asin1 26042 asinbnd 26047 areacirclem4 35864 |
Copyright terms: Public domain | W3C validator |