MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinval Structured version   Visualization version   GIF version

Theorem asinval 26814
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinval (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))

Proof of Theorem asinval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
2 oveq1 7348 . . . . . . 7 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
32oveq2d 7357 . . . . . 6 (𝑥 = 𝐴 → (1 − (𝑥↑2)) = (1 − (𝐴↑2)))
43fveq2d 6821 . . . . 5 (𝑥 = 𝐴 → (√‘(1 − (𝑥↑2))) = (√‘(1 − (𝐴↑2))))
51, 4oveq12d 7359 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
65fveq2d 6821 . . 3 (𝑥 = 𝐴 → (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
76oveq2d 7357 . 2 (𝑥 = 𝐴 → (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
8 df-asin 26797 . 2 arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))))
9 ovex 7374 . 2 (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ V
107, 8, 9fvmpt 6924 1 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  cc 10999  1c1 11002  ici 11003   + caddc 11004   · cmul 11006  cmin 11339  -cneg 11340  2c2 12175  cexp 13963  csqrt 15135  logclog 26485  arcsincasin 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-asin 26797
This theorem is referenced by:  asinneg  26818  efiasin  26820  asinsin  26824  asin1  26826  asinbnd  26831  areacirclem4  37751
  Copyright terms: Public domain W3C validator