| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asinval | Structured version Visualization version GIF version | ||
| Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| asinval | ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7349 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | oveq1 7348 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
| 3 | 2 | oveq2d 7357 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (1 − (𝑥↑2)) = (1 − (𝐴↑2))) |
| 4 | 3 | fveq2d 6821 | . . . . 5 ⊢ (𝑥 = 𝐴 → (√‘(1 − (𝑥↑2))) = (√‘(1 − (𝐴↑2)))) |
| 5 | 1, 4 | oveq12d 7359 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 6 | 5 | fveq2d 6821 | . . 3 ⊢ (𝑥 = 𝐴 → (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
| 7 | 6 | oveq2d 7357 | . 2 ⊢ (𝑥 = 𝐴 → (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
| 8 | df-asin 26797 | . 2 ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | |
| 9 | ovex 7374 | . 2 ⊢ (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6924 | 1 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 2c2 12175 ↑cexp 13963 √csqrt 15135 logclog 26485 arcsincasin 26794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-asin 26797 |
| This theorem is referenced by: asinneg 26818 efiasin 26820 asinsin 26824 asin1 26826 asinbnd 26831 areacirclem4 37751 |
| Copyright terms: Public domain | W3C validator |