![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asinval | Structured version Visualization version GIF version |
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
asinval | β’ (π΄ β β β (arcsinβπ΄) = (-i Β· (logβ((i Β· π΄) + (ββ(1 β (π΄β2))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7416 | . . . . 5 β’ (π₯ = π΄ β (i Β· π₯) = (i Β· π΄)) | |
2 | oveq1 7415 | . . . . . . 7 β’ (π₯ = π΄ β (π₯β2) = (π΄β2)) | |
3 | 2 | oveq2d 7424 | . . . . . 6 β’ (π₯ = π΄ β (1 β (π₯β2)) = (1 β (π΄β2))) |
4 | 3 | fveq2d 6895 | . . . . 5 β’ (π₯ = π΄ β (ββ(1 β (π₯β2))) = (ββ(1 β (π΄β2)))) |
5 | 1, 4 | oveq12d 7426 | . . . 4 β’ (π₯ = π΄ β ((i Β· π₯) + (ββ(1 β (π₯β2)))) = ((i Β· π΄) + (ββ(1 β (π΄β2))))) |
6 | 5 | fveq2d 6895 | . . 3 β’ (π₯ = π΄ β (logβ((i Β· π₯) + (ββ(1 β (π₯β2))))) = (logβ((i Β· π΄) + (ββ(1 β (π΄β2)))))) |
7 | 6 | oveq2d 7424 | . 2 β’ (π₯ = π΄ β (-i Β· (logβ((i Β· π₯) + (ββ(1 β (π₯β2)))))) = (-i Β· (logβ((i Β· π΄) + (ββ(1 β (π΄β2))))))) |
8 | df-asin 26367 | . 2 β’ arcsin = (π₯ β β β¦ (-i Β· (logβ((i Β· π₯) + (ββ(1 β (π₯β2))))))) | |
9 | ovex 7441 | . 2 β’ (-i Β· (logβ((i Β· π΄) + (ββ(1 β (π΄β2)))))) β V | |
10 | 7, 8, 9 | fvmpt 6998 | 1 β’ (π΄ β β β (arcsinβπ΄) = (-i Β· (logβ((i Β· π΄) + (ββ(1 β (π΄β2))))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 βcc 11107 1c1 11110 ici 11111 + caddc 11112 Β· cmul 11114 β cmin 11443 -cneg 11444 2c2 12266 βcexp 14026 βcsqrt 15179 logclog 26062 arcsincasin 26364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-asin 26367 |
This theorem is referenced by: asinneg 26388 efiasin 26390 asinsin 26394 asin1 26396 asinbnd 26401 areacirclem4 36574 |
Copyright terms: Public domain | W3C validator |