Detailed syntax breakdown of Definition df-atl
| Step | Hyp | Ref
| Expression |
| 1 | | cal 39265 |
. 2
class
AtLat |
| 2 | | vk |
. . . . . . 7
setvar 𝑘 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑘 |
| 4 | | cbs 17247 |
. . . . . 6
class
Base |
| 5 | 3, 4 | cfv 6561 |
. . . . 5
class
(Base‘𝑘) |
| 6 | | cglb 18356 |
. . . . . . 7
class
glb |
| 7 | 3, 6 | cfv 6561 |
. . . . . 6
class
(glb‘𝑘) |
| 8 | 7 | cdm 5685 |
. . . . 5
class dom
(glb‘𝑘) |
| 9 | 5, 8 | wcel 2108 |
. . . 4
wff
(Base‘𝑘)
∈ dom (glb‘𝑘) |
| 10 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 12 | | cp0 18468 |
. . . . . . . 8
class
0. |
| 13 | 3, 12 | cfv 6561 |
. . . . . . 7
class
(0.‘𝑘) |
| 14 | 11, 13 | wne 2940 |
. . . . . 6
wff 𝑥 ≠ (0.‘𝑘) |
| 15 | | vp |
. . . . . . . . 9
setvar 𝑝 |
| 16 | 15 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 17 | | cple 17304 |
. . . . . . . . 9
class
le |
| 18 | 3, 17 | cfv 6561 |
. . . . . . . 8
class
(le‘𝑘) |
| 19 | 16, 11, 18 | wbr 5143 |
. . . . . . 7
wff 𝑝(le‘𝑘)𝑥 |
| 20 | | catm 39264 |
. . . . . . . 8
class
Atoms |
| 21 | 3, 20 | cfv 6561 |
. . . . . . 7
class
(Atoms‘𝑘) |
| 22 | 19, 15, 21 | wrex 3070 |
. . . . . 6
wff
∃𝑝 ∈
(Atoms‘𝑘)𝑝(le‘𝑘)𝑥 |
| 23 | 14, 22 | wi 4 |
. . . . 5
wff (𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥) |
| 24 | 23, 10, 5 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥) |
| 25 | 9, 24 | wa 395 |
. . 3
wff
((Base‘𝑘)
∈ dom (glb‘𝑘)
∧ ∀𝑥 ∈
(Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥)) |
| 26 | | clat 18476 |
. . 3
class
Lat |
| 27 | 25, 2, 26 | crab 3436 |
. 2
class {𝑘 ∈ Lat ∣
((Base‘𝑘) ∈ dom
(glb‘𝑘) ∧
∀𝑥 ∈
(Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} |
| 28 | 1, 27 | wceq 1540 |
1
wff AtLat =
{𝑘 ∈ Lat ∣
((Base‘𝑘) ∈ dom
(glb‘𝑘) ∧
∀𝑥 ∈
(Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} |