Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) |
2 | | isatlat.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
3 | 1, 2 | eqtr4di 2796 |
. . . . 5
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
4 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾)) |
5 | | isatlat.g |
. . . . . . 7
⊢ 𝐺 = (glb‘𝐾) |
6 | 4, 5 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺) |
7 | 6 | dmeqd 5814 |
. . . . 5
⊢ (𝑘 = 𝐾 → dom (glb‘𝑘) = dom 𝐺) |
8 | 3, 7 | eleq12d 2833 |
. . . 4
⊢ (𝑘 = 𝐾 → ((Base‘𝑘) ∈ dom (glb‘𝑘) ↔ 𝐵 ∈ dom 𝐺)) |
9 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾)) |
10 | | isatlat.z |
. . . . . . . 8
⊢ 0 =
(0.‘𝐾) |
11 | 9, 10 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (0.‘𝑘) = 0 ) |
12 | 11 | neeq2d 3004 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑥 ≠ (0.‘𝑘) ↔ 𝑥 ≠ 0 )) |
13 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) |
14 | | isatlat.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
15 | 13, 14 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
16 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
17 | | isatlat.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
18 | 16, 17 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
19 | 18 | breqd 5085 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑥 ↔ 𝑦 ≤ 𝑥)) |
20 | 15, 19 | rexeqbidv 3337 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
21 | 12, 20 | imbi12d 345 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) |
22 | 3, 21 | raleqbidv 3336 |
. . . 4
⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) |
23 | 8, 22 | anbi12d 631 |
. . 3
⊢ (𝑘 = 𝐾 → (((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥)) ↔ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)))) |
24 | | df-atl 37312 |
. . 3
⊢ AtLat =
{𝑘 ∈ Lat ∣
((Base‘𝑘) ∈ dom
(glb‘𝑘) ∧
∀𝑥 ∈
(Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥))} |
25 | 23, 24 | elrab2 3627 |
. 2
⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)))) |
26 | | 3anass 1094 |
. 2
⊢ ((𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)))) |
27 | 25, 26 | bitr4i 277 |
1
⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) |