Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isatl Structured version   Visualization version   GIF version

Theorem isatl 39297
Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isatlat.b 𝐵 = (Base‘𝐾)
isatlat.g 𝐺 = (glb‘𝐾)
isatlat.l = (le‘𝐾)
isatlat.z 0 = (0.‘𝐾)
isatlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isatl (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isatl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isatlat.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2782 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6826 . . . . . . 7 (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾))
5 isatlat.g . . . . . . 7 𝐺 = (glb‘𝐾)
64, 5eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺)
76dmeqd 5852 . . . . 5 (𝑘 = 𝐾 → dom (glb‘𝑘) = dom 𝐺)
83, 7eleq12d 2822 . . . 4 (𝑘 = 𝐾 → ((Base‘𝑘) ∈ dom (glb‘𝑘) ↔ 𝐵 ∈ dom 𝐺))
9 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
10 isatlat.z . . . . . . . 8 0 = (0.‘𝐾)
119, 10eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
1211neeq2d 2985 . . . . . 6 (𝑘 = 𝐾 → (𝑥 ≠ (0.‘𝑘) ↔ 𝑥0 ))
13 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
14 isatlat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
1513, 14eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
16 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
17 isatlat.l . . . . . . . . 9 = (le‘𝐾)
1816, 17eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1918breqd 5106 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑥𝑦 𝑥))
2015, 19rexeqbidv 3311 . . . . . 6 (𝑘 = 𝐾 → (∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥 ↔ ∃𝑦𝐴 𝑦 𝑥))
2112, 20imbi12d 344 . . . . 5 (𝑘 = 𝐾 → ((𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
223, 21raleqbidv 3310 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
238, 22anbi12d 632 . . 3 (𝑘 = 𝐾 → (((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥)) ↔ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
24 df-atl 39296 . . 3 AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥))}
2523, 24elrab2 3653 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
26 3anass 1094 . 2 ((𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)) ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
2725, 26bitr4i 278 1 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5095  dom cdm 5623  cfv 6486  Basecbs 17139  lecple 17187  glbcglb 18235  0.cp0 18346  Latclat 18356  Atomscatm 39261  AtLatcal 39262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-dm 5633  df-iota 6442  df-fv 6494  df-atl 39296
This theorem is referenced by:  atllat  39298  atl0dm  39300  atlex  39314
  Copyright terms: Public domain W3C validator