Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isatl Structured version   Visualization version   GIF version

Theorem isatl 36427
Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isatlat.b 𝐵 = (Base‘𝐾)
isatlat.g 𝐺 = (glb‘𝐾)
isatlat.l = (le‘𝐾)
isatlat.z 0 = (0.‘𝐾)
isatlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isatl (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isatl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isatlat.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2872 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6663 . . . . . . 7 (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾))
5 isatlat.g . . . . . . 7 𝐺 = (glb‘𝐾)
64, 5syl6eqr 2872 . . . . . 6 (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺)
76dmeqd 5767 . . . . 5 (𝑘 = 𝐾 → dom (glb‘𝑘) = dom 𝐺)
83, 7eleq12d 2905 . . . 4 (𝑘 = 𝐾 → ((Base‘𝑘) ∈ dom (glb‘𝑘) ↔ 𝐵 ∈ dom 𝐺))
9 fveq2 6663 . . . . . . . 8 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
10 isatlat.z . . . . . . . 8 0 = (0.‘𝐾)
119, 10syl6eqr 2872 . . . . . . 7 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
1211neeq2d 3074 . . . . . 6 (𝑘 = 𝐾 → (𝑥 ≠ (0.‘𝑘) ↔ 𝑥0 ))
13 fveq2 6663 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
14 isatlat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
1513, 14syl6eqr 2872 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
16 fveq2 6663 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
17 isatlat.l . . . . . . . . 9 = (le‘𝐾)
1816, 17syl6eqr 2872 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1918breqd 5068 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑥𝑦 𝑥))
2015, 19rexeqbidv 3401 . . . . . 6 (𝑘 = 𝐾 → (∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥 ↔ ∃𝑦𝐴 𝑦 𝑥))
2112, 20imbi12d 347 . . . . 5 (𝑘 = 𝐾 → ((𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
223, 21raleqbidv 3400 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
238, 22anbi12d 632 . . 3 (𝑘 = 𝐾 → (((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥)) ↔ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
24 df-atl 36426 . . 3 AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥))}
2523, 24elrab2 3681 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
26 3anass 1089 . 2 ((𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)) ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
2725, 26bitr4i 280 1 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014  wral 3136  wrex 3137   class class class wbr 5057  dom cdm 5548  cfv 6348  Basecbs 16475  lecple 16564  glbcglb 17545  0.cp0 17639  Latclat 17647  Atomscatm 36391  AtLatcal 36392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-dm 5558  df-iota 6307  df-fv 6356  df-atl 36426
This theorem is referenced by:  atllat  36428  atl0dm  36430  atlex  36444
  Copyright terms: Public domain W3C validator