Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isatl Structured version   Visualization version   GIF version

Theorem isatl 39338
Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isatlat.b 𝐵 = (Base‘𝐾)
isatlat.g 𝐺 = (glb‘𝐾)
isatlat.l = (le‘𝐾)
isatlat.z 0 = (0.‘𝐾)
isatlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isatl (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isatl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isatlat.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2784 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6817 . . . . . . 7 (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾))
5 isatlat.g . . . . . . 7 𝐺 = (glb‘𝐾)
64, 5eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺)
76dmeqd 5840 . . . . 5 (𝑘 = 𝐾 → dom (glb‘𝑘) = dom 𝐺)
83, 7eleq12d 2825 . . . 4 (𝑘 = 𝐾 → ((Base‘𝑘) ∈ dom (glb‘𝑘) ↔ 𝐵 ∈ dom 𝐺))
9 fveq2 6817 . . . . . . . 8 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
10 isatlat.z . . . . . . . 8 0 = (0.‘𝐾)
119, 10eqtr4di 2784 . . . . . . 7 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
1211neeq2d 2988 . . . . . 6 (𝑘 = 𝐾 → (𝑥 ≠ (0.‘𝑘) ↔ 𝑥0 ))
13 fveq2 6817 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
14 isatlat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
1513, 14eqtr4di 2784 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
16 fveq2 6817 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
17 isatlat.l . . . . . . . . 9 = (le‘𝐾)
1816, 17eqtr4di 2784 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1918breqd 5097 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑥𝑦 𝑥))
2015, 19rexeqbidv 3313 . . . . . 6 (𝑘 = 𝐾 → (∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥 ↔ ∃𝑦𝐴 𝑦 𝑥))
2112, 20imbi12d 344 . . . . 5 (𝑘 = 𝐾 → ((𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
223, 21raleqbidv 3312 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
238, 22anbi12d 632 . . 3 (𝑘 = 𝐾 → (((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥)) ↔ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
24 df-atl 39337 . . 3 AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥))}
2523, 24elrab2 3645 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
26 3anass 1094 . 2 ((𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)) ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
2725, 26bitr4i 278 1 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5086  dom cdm 5611  cfv 6476  Basecbs 17115  lecple 17163  glbcglb 18211  0.cp0 18322  Latclat 18332  Atomscatm 39302  AtLatcal 39303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-dm 5621  df-iota 6432  df-fv 6484  df-atl 39337
This theorem is referenced by:  atllat  39339  atl0dm  39341  atlex  39355
  Copyright terms: Public domain W3C validator