Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meetat2 | Structured version Visualization version GIF version |
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
Ref | Expression |
---|---|
m.b | ⊢ 𝐵 = (Base‘𝐾) |
m.m | ⊢ ∧ = (meet‘𝐾) |
m.z | ⊢ 0 = (0.‘𝐾) |
m.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
meetat2 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | m.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
3 | m.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | m.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | meetat 37237 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) |
6 | eleq1a 2834 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → ((𝑋 ∧ 𝑃) = 𝑃 → (𝑋 ∧ 𝑃) ∈ 𝐴)) | |
7 | 6 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 → (𝑋 ∧ 𝑃) ∈ 𝐴)) |
8 | 7 | orim1d 962 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 ) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 ))) |
9 | 5, 8 | mpd 15 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 meetcmee 17945 0.cp0 18056 OLcol 37115 Atomscatm 37204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-oposet 37117 df-ol 37119 df-covers 37207 df-ats 37208 |
This theorem is referenced by: 2at0mat0 37466 atmod1i1m 37799 |
Copyright terms: Public domain | W3C validator |