Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetat2 Structured version   Visualization version   GIF version

Theorem meetat2 36923
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.)
Hypotheses
Ref Expression
m.b 𝐵 = (Base‘𝐾)
m.m = (meet‘𝐾)
m.z 0 = (0.‘𝐾)
m.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
meetat2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 ))

Proof of Theorem meetat2
StepHypRef Expression
1 m.b . . 3 𝐵 = (Base‘𝐾)
2 m.m . . 3 = (meet‘𝐾)
3 m.z . . 3 0 = (0.‘𝐾)
4 m.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4meetat 36922 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 𝑃 ∨ (𝑋 𝑃) = 0 ))
6 eleq1a 2828 . . . 4 (𝑃𝐴 → ((𝑋 𝑃) = 𝑃 → (𝑋 𝑃) ∈ 𝐴))
763ad2ant3 1136 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 𝑃 → (𝑋 𝑃) ∈ 𝐴))
87orim1d 965 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → (((𝑋 𝑃) = 𝑃 ∨ (𝑋 𝑃) = 0 ) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 )))
95, 8mpd 15 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  w3a 1088   = wceq 1542  wcel 2113  cfv 6333  (class class class)co 7164  Basecbs 16579  meetcmee 17664  0.cp0 17756  OLcol 36800  Atomscatm 36889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-lat 17765  df-oposet 36802  df-ol 36804  df-covers 36892  df-ats 36893
This theorem is referenced by:  2at0mat0  37151  atmod1i1m  37484
  Copyright terms: Public domain W3C validator