![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meetat2 | Structured version Visualization version GIF version |
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
Ref | Expression |
---|---|
m.b | β’ π΅ = (BaseβπΎ) |
m.m | β’ β§ = (meetβπΎ) |
m.z | β’ 0 = (0.βπΎ) |
m.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
meetat2 | β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) β π΄ β¨ (π β§ π) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | m.m | . . 3 β’ β§ = (meetβπΎ) | |
3 | m.z | . . 3 β’ 0 = (0.βπΎ) | |
4 | m.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | 1, 2, 3, 4 | meetat 37804 | . 2 β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) = π β¨ (π β§ π) = 0 )) |
6 | eleq1a 2829 | . . . 4 β’ (π β π΄ β ((π β§ π) = π β (π β§ π) β π΄)) | |
7 | 6 | 3ad2ant3 1136 | . . 3 β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) = π β (π β§ π) β π΄)) |
8 | 7 | orim1d 965 | . 2 β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β (((π β§ π) = π β¨ (π β§ π) = 0 ) β ((π β§ π) β π΄ β¨ (π β§ π) = 0 ))) |
9 | 5, 8 | mpd 15 | 1 β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) β π΄ β¨ (π β§ π) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 846 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6497 (class class class)co 7358 Basecbs 17088 meetcmee 18206 0.cp0 18317 OLcol 37682 Atomscatm 37771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-proset 18189 df-poset 18207 df-plt 18224 df-lub 18240 df-glb 18241 df-join 18242 df-meet 18243 df-p0 18319 df-lat 18326 df-oposet 37684 df-ol 37686 df-covers 37774 df-ats 37775 |
This theorem is referenced by: 2at0mat0 38034 atmod1i1m 38367 |
Copyright terms: Public domain | W3C validator |