Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetat2 Structured version   Visualization version   GIF version

Theorem meetat2 38105
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.)
Hypotheses
Ref Expression
m.b 𝐵 = (Base‘𝐾)
m.m = (meet‘𝐾)
m.z 0 = (0.‘𝐾)
m.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
meetat2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 ))

Proof of Theorem meetat2
StepHypRef Expression
1 m.b . . 3 𝐵 = (Base‘𝐾)
2 m.m . . 3 = (meet‘𝐾)
3 m.z . . 3 0 = (0.‘𝐾)
4 m.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4meetat 38104 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 𝑃 ∨ (𝑋 𝑃) = 0 ))
6 eleq1a 2829 . . . 4 (𝑃𝐴 → ((𝑋 𝑃) = 𝑃 → (𝑋 𝑃) ∈ 𝐴))
763ad2ant3 1136 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 𝑃 → (𝑋 𝑃) ∈ 𝐴))
87orim1d 965 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → (((𝑋 𝑃) = 𝑃 ∨ (𝑋 𝑃) = 0 ) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 )))
95, 8mpd 15 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  w3a 1088   = wceq 1542  wcel 2107  cfv 6540  (class class class)co 7404  Basecbs 17140  meetcmee 18261  0.cp0 18372  OLcol 37982  Atomscatm 38071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-oposet 37984  df-ol 37986  df-covers 38074  df-ats 38075
This theorem is referenced by:  2at0mat0  38334  atmod1i1m  38667
  Copyright terms: Public domain W3C validator