| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meetat2 | Structured version Visualization version GIF version | ||
| Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
| Ref | Expression |
|---|---|
| m.b | ⊢ 𝐵 = (Base‘𝐾) |
| m.m | ⊢ ∧ = (meet‘𝐾) |
| m.z | ⊢ 0 = (0.‘𝐾) |
| m.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| meetat2 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | m.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 3 | m.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | m.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | meetat 39282 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) |
| 6 | eleq1a 2823 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → ((𝑋 ∧ 𝑃) = 𝑃 → (𝑋 ∧ 𝑃) ∈ 𝐴)) | |
| 7 | 6 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 → (𝑋 ∧ 𝑃) ∈ 𝐴)) |
| 8 | 7 | orim1d 967 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 ) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 ))) |
| 9 | 5, 8 | mpd 15 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 meetcmee 18253 0.cp0 18362 OLcol 39160 Atomscatm 39249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-lat 18373 df-oposet 39162 df-ol 39164 df-covers 39252 df-ats 39253 |
| This theorem is referenced by: 2at0mat0 39512 atmod1i1m 39845 |
| Copyright terms: Public domain | W3C validator |