Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-bdop | Structured version Visualization version GIF version |
Description: Define the set of bounded linear Hilbert space operators. (See df-hosum 30092 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bdop | ⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbo 29310 | . 2 class BndLinOp | |
2 | vt | . . . . . 6 setvar 𝑡 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑡 |
4 | cnop 29307 | . . . . 5 class normop | |
5 | 3, 4 | cfv 6433 | . . . 4 class (normop‘𝑡) |
6 | cpnf 11006 | . . . 4 class +∞ | |
7 | clt 11009 | . . . 4 class < | |
8 | 5, 6, 7 | wbr 5074 | . . 3 wff (normop‘𝑡) < +∞ |
9 | clo 29309 | . . 3 class LinOp | |
10 | 8, 2, 9 | crab 3068 | . 2 class {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} |
11 | 1, 10 | wceq 1539 | 1 wff BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} |
Colors of variables: wff setvar class |
This definition is referenced by: elbdop 30222 hhbloi 30264 |
Copyright terms: Public domain | W3C validator |