| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-bdop | Structured version Visualization version GIF version | ||
| Description: Define the set of bounded linear Hilbert space operators. (See df-hosum 31749 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bdop | ⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbo 30967 | . 2 class BndLinOp | |
| 2 | vt | . . . . . 6 setvar 𝑡 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑡 |
| 4 | cnop 30964 | . . . . 5 class normop | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (normop‘𝑡) |
| 6 | cpnf 11292 | . . . 4 class +∞ | |
| 7 | clt 11295 | . . . 4 class < | |
| 8 | 5, 6, 7 | wbr 5143 | . . 3 wff (normop‘𝑡) < +∞ |
| 9 | clo 30966 | . . 3 class LinOp | |
| 10 | 8, 2, 9 | crab 3436 | . 2 class {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} |
| 11 | 1, 10 | wceq 1540 | 1 wff BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elbdop 31879 hhbloi 31921 |
| Copyright terms: Public domain | W3C validator |