HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-bdop Structured version   Visualization version   GIF version

Definition df-bdop 30105
Description: Define the set of bounded linear Hilbert space operators. (See df-hosum 29993 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-bdop BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}

Detailed syntax breakdown of Definition df-bdop
StepHypRef Expression
1 cbo 29211 . 2 class BndLinOp
2 vt . . . . . 6 setvar 𝑡
32cv 1538 . . . . 5 class 𝑡
4 cnop 29208 . . . . 5 class normop
53, 4cfv 6418 . . . 4 class (normop𝑡)
6 cpnf 10937 . . . 4 class +∞
7 clt 10940 . . . 4 class <
85, 6, 7wbr 5070 . . 3 wff (normop𝑡) < +∞
9 clo 29210 . . 3 class LinOp
108, 2, 9crab 3067 . 2 class {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
111, 10wceq 1539 1 wff BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
Colors of variables: wff setvar class
This definition is referenced by:  elbdop  30123  hhbloi  30165
  Copyright terms: Public domain W3C validator