Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhbloi | Structured version Visualization version GIF version |
Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnmo.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhblo.2 | ⊢ 𝐵 = (𝑈 BLnOp 𝑈) |
Ref | Expression |
---|---|
hhbloi | ⊢ BndLinOp = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bdop 29923 | . 2 ⊢ BndLinOp = {𝑥 ∈ LinOp ∣ (normop‘𝑥) < +∞} | |
2 | hhnmo.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 29246 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
4 | eqid 2737 | . . . . 5 ⊢ (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈) | |
5 | 2, 4 | hhnmoi 29982 | . . . 4 ⊢ normop = (𝑈 normOpOLD 𝑈) |
6 | eqid 2737 | . . . . 5 ⊢ (𝑈 LnOp 𝑈) = (𝑈 LnOp 𝑈) | |
7 | 2, 6 | hhlnoi 29981 | . . . 4 ⊢ LinOp = (𝑈 LnOp 𝑈) |
8 | hhblo.2 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑈) | |
9 | 5, 7, 8 | bloval 28862 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝐵 = {𝑥 ∈ LinOp ∣ (normop‘𝑥) < +∞}) |
10 | 3, 3, 9 | mp2an 692 | . 2 ⊢ 𝐵 = {𝑥 ∈ LinOp ∣ (normop‘𝑥) < +∞} |
11 | 1, 10 | eqtr4i 2768 | 1 ⊢ BndLinOp = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 {crab 3065 〈cop 4547 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 +∞cpnf 10864 < clt 10867 NrmCVeccnv 28665 LnOp clno 28821 normOpOLD cnmoo 28822 BLnOp cblo 28823 +ℎ cva 29001 ·ℎ csm 29002 normℎcno 29004 normopcnop 29026 LinOpclo 29028 BndLinOpcbo 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-hilex 29080 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvmulass 29088 ax-hvdistr1 29089 ax-hvdistr2 29090 ax-hvmul0 29091 ax-hfi 29160 ax-his1 29163 ax-his2 29164 ax-his3 29165 ax-his4 29166 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-grpo 28574 df-gid 28575 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-nmcv 28681 df-lno 28825 df-nmoo 28826 df-blo 28827 df-hnorm 29049 df-hvsub 29052 df-nmop 29920 df-lnop 29922 df-bdop 29923 |
This theorem is referenced by: hmopbdoptHIL 30069 |
Copyright terms: Public domain | W3C validator |