| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhbloi | Structured version Visualization version GIF version | ||
| Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhnmo.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhblo.2 | ⊢ 𝐵 = (𝑈 BLnOp 𝑈) |
| Ref | Expression |
|---|---|
| hhbloi | ⊢ BndLinOp = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bdop 31769 | . 2 ⊢ BndLinOp = {𝑥 ∈ LinOp ∣ (normop‘𝑥) < +∞} | |
| 2 | hhnmo.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | 2 | hhnv 31092 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
| 4 | eqid 2735 | . . . . 5 ⊢ (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈) | |
| 5 | 2, 4 | hhnmoi 31828 | . . . 4 ⊢ normop = (𝑈 normOpOLD 𝑈) |
| 6 | eqid 2735 | . . . . 5 ⊢ (𝑈 LnOp 𝑈) = (𝑈 LnOp 𝑈) | |
| 7 | 2, 6 | hhlnoi 31827 | . . . 4 ⊢ LinOp = (𝑈 LnOp 𝑈) |
| 8 | hhblo.2 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑈) | |
| 9 | 5, 7, 8 | bloval 30708 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝐵 = {𝑥 ∈ LinOp ∣ (normop‘𝑥) < +∞}) |
| 10 | 3, 3, 9 | mp2an 692 | . 2 ⊢ 𝐵 = {𝑥 ∈ LinOp ∣ (normop‘𝑥) < +∞} |
| 11 | 1, 10 | eqtr4i 2761 | 1 ⊢ BndLinOp = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 〈cop 4607 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 +∞cpnf 11264 < clt 11267 NrmCVeccnv 30511 LnOp clno 30667 normOpOLD cnmoo 30668 BLnOp cblo 30669 +ℎ cva 30847 ·ℎ csm 30848 normℎcno 30850 normopcnop 30872 LinOpclo 30874 BndLinOpcbo 30875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr1 30935 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-grpo 30420 df-gid 30421 df-ablo 30472 df-vc 30486 df-nv 30519 df-va 30522 df-ba 30523 df-sm 30524 df-nmcv 30527 df-lno 30671 df-nmoo 30672 df-blo 30673 df-hnorm 30895 df-hvsub 30898 df-nmop 31766 df-lnop 31768 df-bdop 31769 |
| This theorem is referenced by: hmopbdoptHIL 31915 |
| Copyright terms: Public domain | W3C validator |