HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhbloi Structured version   Visualization version   GIF version

Theorem hhbloi 29102
Description: A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhnmo.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhblo.2 𝐵 = (𝑈 BLnOp 𝑈)
Assertion
Ref Expression
hhbloi BndLinOp = 𝐵

Proof of Theorem hhbloi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bdop 29042 . 2 BndLinOp = {𝑥 ∈ LinOp ∣ (normop𝑥) < +∞}
2 hhnmo.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 28363 . . 3 𝑈 ∈ NrmCVec
4 eqid 2771 . . . . 5 (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈)
52, 4hhnmoi 29101 . . . 4 normop = (𝑈 normOpOLD 𝑈)
6 eqid 2771 . . . . 5 (𝑈 LnOp 𝑈) = (𝑈 LnOp 𝑈)
72, 6hhlnoi 29100 . . . 4 LinOp = (𝑈 LnOp 𝑈)
8 hhblo.2 . . . 4 𝐵 = (𝑈 BLnOp 𝑈)
95, 7, 8bloval 27977 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝐵 = {𝑥 ∈ LinOp ∣ (normop𝑥) < +∞})
103, 3, 9mp2an 666 . 2 𝐵 = {𝑥 ∈ LinOp ∣ (normop𝑥) < +∞}
111, 10eqtr4i 2796 1 BndLinOp = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  {crab 3065  cop 4323   class class class wbr 4787  cfv 6032  (class class class)co 6794  +∞cpnf 10274   < clt 10277  NrmCVeccnv 27780   LnOp clno 27936   normOpOLD cnmoo 27937   BLnOp cblo 27938   + cva 28118   · csm 28119  normcno 28121  normopcnop 28143  LinOpclo 28145  BndLinOpcbo 28146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217  ax-hilex 28197  ax-hfvadd 28198  ax-hvcom 28199  ax-hvass 28200  ax-hv0cl 28201  ax-hvaddid 28202  ax-hfvmul 28203  ax-hvmulid 28204  ax-hvmulass 28205  ax-hvdistr1 28206  ax-hvdistr2 28207  ax-hvmul0 28208  ax-hfi 28277  ax-his1 28280  ax-his2 28281  ax-his3 28282  ax-his4 28283
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-sup 8505  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-n0 11496  df-z 11581  df-uz 11890  df-rp 12037  df-seq 13010  df-exp 13069  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-grpo 27688  df-gid 27689  df-ablo 27740  df-vc 27755  df-nv 27788  df-va 27791  df-ba 27792  df-sm 27793  df-nmcv 27796  df-lno 27940  df-nmoo 27941  df-blo 27942  df-hnorm 28166  df-hvsub 28169  df-nmop 29039  df-lnop 29041  df-bdop 29042
This theorem is referenced by:  hmopbdoptHIL  29188
  Copyright terms: Public domain W3C validator