HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hosum Structured version   Visualization version   GIF version

Definition df-hosum 29993
Description: Define the sum of two Hilbert space operators. Definition of [Beran] p. 111. (Contributed by NM, 9-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-hosum +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-hosum
StepHypRef Expression
1 chos 29201 . 2 class +op
2 vf . . 3 setvar 𝑓
3 vg . . 3 setvar 𝑔
4 chba 29182 . . . 4 class
5 cmap 8573 . . . 4 class m
64, 4, 5co 7255 . . 3 class ( ℋ ↑m ℋ)
7 vx . . . 4 setvar 𝑥
87cv 1538 . . . . . 6 class 𝑥
92cv 1538 . . . . . 6 class 𝑓
108, 9cfv 6418 . . . . 5 class (𝑓𝑥)
113cv 1538 . . . . . 6 class 𝑔
128, 11cfv 6418 . . . . 5 class (𝑔𝑥)
13 cva 29183 . . . . 5 class +
1410, 12, 13co 7255 . . . 4 class ((𝑓𝑥) + (𝑔𝑥))
157, 4, 14cmpt 5153 . . 3 class (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥)))
162, 3, 6, 6, 15cmpo 7257 . 2 class (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
171, 16wceq 1539 1 wff +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
Colors of variables: wff setvar class
This definition is referenced by:  hosmval  29998
  Copyright terms: Public domain W3C validator