Detailed syntax breakdown of Definition df-hosum
Step | Hyp | Ref
| Expression |
1 | | chos 29300 |
. 2
class
+op |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vg |
. . 3
setvar 𝑔 |
4 | | chba 29281 |
. . . 4
class
ℋ |
5 | | cmap 8615 |
. . . 4
class
↑m |
6 | 4, 4, 5 | co 7275 |
. . 3
class ( ℋ
↑m ℋ) |
7 | | vx |
. . . 4
setvar 𝑥 |
8 | 7 | cv 1538 |
. . . . . 6
class 𝑥 |
9 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
10 | 8, 9 | cfv 6433 |
. . . . 5
class (𝑓‘𝑥) |
11 | 3 | cv 1538 |
. . . . . 6
class 𝑔 |
12 | 8, 11 | cfv 6433 |
. . . . 5
class (𝑔‘𝑥) |
13 | | cva 29282 |
. . . . 5
class
+ℎ |
14 | 10, 12, 13 | co 7275 |
. . . 4
class ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)) |
15 | 7, 4, 14 | cmpt 5157 |
. . 3
class (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥))) |
16 | 2, 3, 6, 6, 15 | cmpo 7277 |
. 2
class (𝑓 ∈ ( ℋ
↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) |
17 | 1, 16 | wceq 1539 |
1
wff
+op = (𝑓 ∈
( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) |