Detailed syntax breakdown of Definition df-unop
Step | Hyp | Ref
| Expression |
1 | | cuo 29311 |
. 2
class
UniOp |
2 | | chba 29281 |
. . . . 5
class
ℋ |
3 | | vt |
. . . . . 6
setvar 𝑡 |
4 | 3 | cv 1538 |
. . . . 5
class 𝑡 |
5 | 2, 2, 4 | wfo 6431 |
. . . 4
wff 𝑡: ℋ–onto→ ℋ |
6 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
7 | 6 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
8 | 7, 4 | cfv 6433 |
. . . . . . . 8
class (𝑡‘𝑥) |
9 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
10 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
11 | 10, 4 | cfv 6433 |
. . . . . . . 8
class (𝑡‘𝑦) |
12 | | csp 29284 |
. . . . . . . 8
class
·ih |
13 | 8, 11, 12 | co 7275 |
. . . . . . 7
class ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) |
14 | 7, 10, 12 | co 7275 |
. . . . . . 7
class (𝑥
·ih 𝑦) |
15 | 13, 14 | wceq 1539 |
. . . . . 6
wff ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) |
16 | 15, 9, 2 | wral 3064 |
. . . . 5
wff
∀𝑦 ∈
ℋ ((𝑡‘𝑥)
·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) |
17 | 16, 6, 2 | wral 3064 |
. . . 4
wff
∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ ((𝑡‘𝑥)
·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) |
18 | 5, 17 | wa 396 |
. . 3
wff (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦)) |
19 | 18, 3 | cab 2715 |
. 2
class {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} |
20 | 1, 19 | wceq 1539 |
1
wff UniOp =
{𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} |