| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elbdop | Structured version Visualization version GIF version | ||
| Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elbdop | ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ (𝑡 = 𝑇 → (normop‘𝑡) = (normop‘𝑇)) | |
| 2 | 1 | breq1d 5120 | . 2 ⊢ (𝑡 = 𝑇 → ((normop‘𝑡) < +∞ ↔ (normop‘𝑇) < +∞)) |
| 3 | df-bdop 31778 | . 2 ⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} | |
| 4 | 2, 3 | elrab2 3665 | 1 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 +∞cpnf 11212 < clt 11215 normopcnop 30881 LinOpclo 30883 BndLinOpcbo 30884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-bdop 31778 |
| This theorem is referenced by: bdopln 31797 nmopre 31806 elbdop2 31807 0bdop 31929 |
| Copyright terms: Public domain | W3C validator |