Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  elbdop Structured version   Visualization version   GIF version

Theorem elbdop 29646
 Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elbdop (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))

Proof of Theorem elbdop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6661 . . 3 (𝑡 = 𝑇 → (normop𝑡) = (normop𝑇))
21breq1d 5062 . 2 (𝑡 = 𝑇 → ((normop𝑡) < +∞ ↔ (normop𝑇) < +∞))
3 df-bdop 29628 . 2 BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
42, 3elrab2 3669 1 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   class class class wbr 5052  ‘cfv 6343  +∞cpnf 10670   < clt 10673  normopcnop 28731  LinOpclo 28733  BndLinOpcbo 28734 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-rab 3142  df-v 3482  df-un 3924  df-in 3926  df-ss 3936  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-iota 6302  df-fv 6351  df-bdop 29628 This theorem is referenced by:  bdopln  29647  nmopre  29656  elbdop2  29657  0bdop  29779
 Copyright terms: Public domain W3C validator