HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elbdop Structured version   Visualization version   GIF version

Theorem elbdop 30231
Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elbdop (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))

Proof of Theorem elbdop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6771 . . 3 (𝑡 = 𝑇 → (normop𝑡) = (normop𝑇))
21breq1d 5089 . 2 (𝑡 = 𝑇 → ((normop𝑡) < +∞ ↔ (normop𝑇) < +∞))
3 df-bdop 30213 . 2 BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
42, 3elrab2 3629 1 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  +∞cpnf 11017   < clt 11020  normopcnop 29316  LinOpclo 29318  BndLinOpcbo 29319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-bdop 30213
This theorem is referenced by:  bdopln  30232  nmopre  30241  elbdop2  30242  0bdop  30364
  Copyright terms: Public domain W3C validator