Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > elbdop | Structured version Visualization version GIF version |
Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elbdop | ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6771 | . . 3 ⊢ (𝑡 = 𝑇 → (normop‘𝑡) = (normop‘𝑇)) | |
2 | 1 | breq1d 5089 | . 2 ⊢ (𝑡 = 𝑇 → ((normop‘𝑡) < +∞ ↔ (normop‘𝑇) < +∞)) |
3 | df-bdop 30213 | . 2 ⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} | |
4 | 2, 3 | elrab2 3629 | 1 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 +∞cpnf 11017 < clt 11020 normopcnop 29316 LinOpclo 29318 BndLinOpcbo 29319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-bdop 30213 |
This theorem is referenced by: bdopln 30232 nmopre 30241 elbdop2 30242 0bdop 30364 |
Copyright terms: Public domain | W3C validator |