HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elbdop Structured version   Visualization version   GIF version

Theorem elbdop 31762
Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elbdop (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))

Proof of Theorem elbdop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑡 = 𝑇 → (normop𝑡) = (normop𝑇))
21breq1d 5112 . 2 (𝑡 = 𝑇 → ((normop𝑡) < +∞ ↔ (normop𝑇) < +∞))
3 df-bdop 31744 . 2 BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
42, 3elrab2 3659 1 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  +∞cpnf 11181   < clt 11184  normopcnop 30847  LinOpclo 30849  BndLinOpcbo 30850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-bdop 31744
This theorem is referenced by:  bdopln  31763  nmopre  31772  elbdop2  31773  0bdop  31895
  Copyright terms: Public domain W3C validator