| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj15 | Structured version Visualization version GIF version | ||
| Description: Define the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bnj15 | ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | w-bnj15 34706 | . 2 wff 𝑅 FrSe 𝐴 |
| 4 | 1, 2 | wfr 5634 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | 1, 2 | w-bnj13 34704 | . . 3 wff 𝑅 Se 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bnj93 34877 bnj1177 35020 bnj1364 35042 bnj1417 35055 |
| Copyright terms: Public domain | W3C validator |