Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1417 Structured version   Visualization version   GIF version

Theorem bnj1417 31923
Description: Technical lemma for bnj60 31944. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1417.1 (𝜑𝑅 FrSe 𝐴)
bnj1417.2 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
bnj1417.3 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
bnj1417.4 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
bnj1417.5 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1417 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1417
StepHypRef Expression
1 bnj1417.1 . . . 4 (𝜑𝑅 FrSe 𝐴)
21biimpi 217 . . 3 (𝜑𝑅 FrSe 𝐴)
3 bnj1417.4 . . . . . 6 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
4 bnj1418 31922 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝑅𝑥)
54adantl 482 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑥𝑅𝑥)
63, 2bnj835 31643 . . . . . . . . . . . 12 (𝜃𝑅 FrSe 𝐴)
7 df-bnj15 31576 . . . . . . . . . . . . 13 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
87simplbi 498 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
96, 8syl 17 . . . . . . . . . . 11 (𝜃𝑅 Fr 𝐴)
10 bnj213 31766 . . . . . . . . . . . 12 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐴
1110sseli 3891 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝐴)
12 frirr 5427 . . . . . . . . . . 11 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
139, 11, 12syl2an 595 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥𝑅𝑥)
145, 13pm2.65da 813 . . . . . . . . 9 (𝜃 → ¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅))
15 nfv 1896 . . . . . . . . . . . . . 14 𝑦𝜑
16 nfv 1896 . . . . . . . . . . . . . 14 𝑦 𝑥𝐴
17 bnj1417.3 . . . . . . . . . . . . . . . 16 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
1817bnj1095 31666 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑦𝜒)
1918nf5i 2119 . . . . . . . . . . . . . 14 𝑦𝜒
2015, 16, 19nf3an 1887 . . . . . . . . . . . . 13 𝑦(𝜑𝑥𝐴𝜒)
213, 20nfxfr 1838 . . . . . . . . . . . 12 𝑦𝜃
226ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
23 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ pred(𝑥, 𝐴, 𝑅))
2410, 23sseldi 3893 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝐴)
25 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
26 bnj1125 31874 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑦𝐴𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
2722, 24, 25, 26syl3anc 1364 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
28 bnj1147 31876 . . . . . . . . . . . . . . . . . 18 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2928, 25sseldi 3893 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj906 31814 . . . . . . . . . . . . . . . . 17 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3122, 29, 30syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3231, 23sseldd 3896 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅))
3327, 32sseldd 3896 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
3417biimpi 217 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
353, 34bnj837 31645 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
3635ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
37 bnj1418 31922 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
3837ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝑅𝑥)
39 rsp 3174 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓) → (𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓)))
4036, 24, 38, 39syl3c 66 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → [𝑦 / 𝑥]𝜓)
41 vex 3443 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
42 bnj1417.2 . . . . . . . . . . . . . . . . 17 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
43 eleq1w 2867 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅)))
44 bnj1318 31907 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
4544eleq2d 2870 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑦 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4643, 45bitrd 280 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4746notbid 319 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4842, 47syl5bb 284 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4941, 48sbcie 3746 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5040, 49sylib 219 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5133, 50pm2.65da 813 . . . . . . . . . . . . 13 ((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5251ex 413 . . . . . . . . . . . 12 (𝜃 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)))
5321, 52ralrimi 3185 . . . . . . . . . . 11 (𝜃 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
54 ralnex 3202 . . . . . . . . . . 11 (∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅) ↔ ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5553, 54sylib 219 . . . . . . . . . 10 (𝜃 → ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
56 eliun 4835 . . . . . . . . . 10 (𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5755, 56sylnibr 330 . . . . . . . . 9 (𝜃 → ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
58 ioran 978 . . . . . . . . 9 (¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∧ ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5914, 57, 58sylanbrc 583 . . . . . . . 8 (𝜃 → ¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
603simp2bi 1139 . . . . . . . . . . 11 (𝜃𝑥𝐴)
61 bnj1417.5 . . . . . . . . . . . 12 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
6261bnj1414 31919 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
636, 60, 62syl2anc 584 . . . . . . . . . 10 (𝜃 → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
6463eleq2d 2870 . . . . . . . . 9 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑥𝐵))
6561bnj1138 31673 . . . . . . . . 9 (𝑥𝐵 ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
6664, 65syl6bb 288 . . . . . . . 8 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))))
6759, 66mtbird 326 . . . . . . 7 (𝜃 → ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
6867, 42sylibr 235 . . . . . 6 (𝜃𝜓)
693, 68sylbir 236 . . . . 5 ((𝜑𝑥𝐴𝜒) → 𝜓)
70693exp 1112 . . . 4 (𝜑 → (𝑥𝐴 → (𝜒𝜓)))
7170ralrimiv 3150 . . 3 (𝜑 → ∀𝑥𝐴 (𝜒𝜓))
7217bnj1204 31894 . . 3 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜒𝜓)) → ∀𝑥𝐴 𝜓)
732, 71, 72syl2anc 584 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
7442ralbii 3134 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
7573, 74sylib 219 1 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1525  wcel 2083  wral 3107  wrex 3108  [wsbc 3711  cun 3863  wss 3865   ciun 4831   class class class wbr 4968   Fr wfr 5406   predc-bnj14 31571   Se w-bnj13 31573   FrSe w-bnj15 31575   trClc-bnj18 31577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-reg 8909  ax-inf2 8957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-1o 7960  df-bnj17 31570  df-bnj14 31572  df-bnj13 31574  df-bnj15 31576  df-bnj18 31578  df-bnj19 31580
This theorem is referenced by:  bnj1421  31924
  Copyright terms: Public domain W3C validator