Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1417 Structured version   Visualization version   GIF version

Theorem bnj1417 33021
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1417.1 (𝜑𝑅 FrSe 𝐴)
bnj1417.2 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
bnj1417.3 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
bnj1417.4 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
bnj1417.5 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1417 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1417
StepHypRef Expression
1 bnj1417.1 . . . 4 (𝜑𝑅 FrSe 𝐴)
21biimpi 215 . . 3 (𝜑𝑅 FrSe 𝐴)
3 bnj1417.4 . . . . . 6 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
4 bnj1418 33020 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝑅𝑥)
54adantl 482 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑥𝑅𝑥)
63, 2bnj835 32739 . . . . . . . . . . . 12 (𝜃𝑅 FrSe 𝐴)
7 df-bnj15 32672 . . . . . . . . . . . . 13 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
87simplbi 498 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
96, 8syl 17 . . . . . . . . . . 11 (𝜃𝑅 Fr 𝐴)
10 bnj213 32862 . . . . . . . . . . . 12 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐴
1110sseli 3917 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝐴)
12 frirr 5566 . . . . . . . . . . 11 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
139, 11, 12syl2an 596 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥𝑅𝑥)
145, 13pm2.65da 814 . . . . . . . . 9 (𝜃 → ¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅))
15 nfv 1917 . . . . . . . . . . . . . 14 𝑦𝜑
16 nfv 1917 . . . . . . . . . . . . . 14 𝑦 𝑥𝐴
17 bnj1417.3 . . . . . . . . . . . . . . . 16 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
1817bnj1095 32761 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑦𝜒)
1918nf5i 2142 . . . . . . . . . . . . . 14 𝑦𝜒
2015, 16, 19nf3an 1904 . . . . . . . . . . . . 13 𝑦(𝜑𝑥𝐴𝜒)
213, 20nfxfr 1855 . . . . . . . . . . . 12 𝑦𝜃
226ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
23 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ pred(𝑥, 𝐴, 𝑅))
2410, 23sselid 3919 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝐴)
25 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
26 bnj1125 32972 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑦𝐴𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
2722, 24, 25, 26syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
28 bnj1147 32974 . . . . . . . . . . . . . . . . . 18 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2928, 25sselid 3919 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj906 32910 . . . . . . . . . . . . . . . . 17 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3122, 29, 30syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3231, 23sseldd 3922 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅))
3327, 32sseldd 3922 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
3417biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
353, 34bnj837 32741 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
3635ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
37 bnj1418 33020 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
3837ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝑅𝑥)
39 rsp 3131 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓) → (𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓)))
4036, 24, 38, 39syl3c 66 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → [𝑦 / 𝑥]𝜓)
41 vex 3436 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
42 bnj1417.2 . . . . . . . . . . . . . . . . 17 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
43 eleq1w 2821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅)))
44 bnj1318 33005 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
4544eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑦 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4643, 45bitrd 278 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4746notbid 318 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4842, 47syl5bb 283 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4941, 48sbcie 3759 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5040, 49sylib 217 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5133, 50pm2.65da 814 . . . . . . . . . . . . 13 ((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5251ex 413 . . . . . . . . . . . 12 (𝜃 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)))
5321, 52ralrimi 3141 . . . . . . . . . . 11 (𝜃 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
54 ralnex 3167 . . . . . . . . . . 11 (∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅) ↔ ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5553, 54sylib 217 . . . . . . . . . 10 (𝜃 → ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
56 eliun 4928 . . . . . . . . . 10 (𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5755, 56sylnibr 329 . . . . . . . . 9 (𝜃 → ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
58 ioran 981 . . . . . . . . 9 (¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∧ ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5914, 57, 58sylanbrc 583 . . . . . . . 8 (𝜃 → ¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
603simp2bi 1145 . . . . . . . . . . 11 (𝜃𝑥𝐴)
61 bnj1417.5 . . . . . . . . . . . 12 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
6261bnj1414 33017 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
636, 60, 62syl2anc 584 . . . . . . . . . 10 (𝜃 → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
6463eleq2d 2824 . . . . . . . . 9 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑥𝐵))
6561bnj1138 32768 . . . . . . . . 9 (𝑥𝐵 ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
6664, 65bitrdi 287 . . . . . . . 8 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))))
6759, 66mtbird 325 . . . . . . 7 (𝜃 → ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
6867, 42sylibr 233 . . . . . 6 (𝜃𝜓)
693, 68sylbir 234 . . . . 5 ((𝜑𝑥𝐴𝜒) → 𝜓)
70693exp 1118 . . . 4 (𝜑 → (𝑥𝐴 → (𝜒𝜓)))
7170ralrimiv 3102 . . 3 (𝜑 → ∀𝑥𝐴 (𝜒𝜓))
7217bnj1204 32992 . . 3 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜒𝜓)) → ∀𝑥𝐴 𝜓)
732, 71, 72syl2anc 584 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
7442ralbii 3092 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
7573, 74sylib 217 1 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  [wsbc 3716  cun 3885  wss 3887   ciun 4924   class class class wbr 5074   Fr wfr 5541   predc-bnj14 32667   Se w-bnj13 32669   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674  df-bnj19 32676
This theorem is referenced by:  bnj1421  33022
  Copyright terms: Public domain W3C validator