![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj93 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj97 31710. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj93 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj15 31536 | . . . 4 ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝑅 FrSe 𝐴 → 𝑅 Se 𝐴) |
3 | df-bnj13 31534 | . . 3 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) | |
4 | 2, 3 | sylib 219 | . 2 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
5 | 4 | r19.21bi 3173 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2079 ∀wral 3103 Vcvv 3432 Fr wfr 5391 predc-bnj14 31531 Se w-bnj13 31533 FrSe w-bnj15 31535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-12 2139 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1760 df-ral 3108 df-bnj13 31534 df-bnj15 31536 |
This theorem is referenced by: bnj96 31709 bnj97 31710 bnj149 31719 bnj150 31720 bnj518 31730 bnj1148 31838 |
Copyright terms: Public domain | W3C validator |