Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj93 Structured version   Visualization version   GIF version

Theorem bnj93 34392
Description: Technical lemma for bnj97 34395. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj93 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem bnj93
StepHypRef Expression
1 df-bnj15 34222 . . . 4 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
21simprbi 496 . . 3 (𝑅 FrSe 𝐴𝑅 Se 𝐴)
3 df-bnj13 34220 . . 3 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
42, 3sylib 217 . 2 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
54r19.21bi 3240 1 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  wral 3053  Vcvv 3466   Fr wfr 5619   predc-bnj14 34217   Se w-bnj13 34219   FrSe w-bnj15 34221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-ral 3054  df-bnj13 34220  df-bnj15 34222
This theorem is referenced by:  bnj96  34394  bnj97  34395  bnj149  34404  bnj150  34405  bnj518  34415  bnj1148  34525
  Copyright terms: Public domain W3C validator