![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1177 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1177.2 | ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) |
bnj1177.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
bnj1177.9 | ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) |
bnj1177.13 | ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) |
bnj1177.17 | ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1177 | ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1177.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) | |
2 | df-bnj15 34669 | . . . 4 ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | |
3 | 2 | simplbi 497 | . . 3 ⊢ (𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴) |
4 | 1, 3 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 Fr 𝐴) |
5 | bnj1177.3 | . . . 4 ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) | |
6 | bnj1147 34970 | . . . . 5 ⊢ trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 | |
7 | ssinss1 4267 | . . . . 5 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 |
9 | 5, 8 | eqsstri 4043 | . . 3 ⊢ 𝐶 ⊆ 𝐴 |
10 | 9 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐴) |
11 | bnj1177.17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) | |
12 | bnj906 34906 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
13 | 1, 11, 12 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
14 | 13 | ssrind 4265 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
15 | bnj1177.13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) | |
16 | bnj1177.2 | . . . . . . . . . 10 ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) | |
17 | 16 | simp2bi 1146 | . . . . . . . . 9 ⊢ (𝜓 → 𝑦 ∈ 𝐵) |
18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
19 | 15, 18 | sseldd 4009 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐴) |
20 | 16 | simp3bi 1147 | . . . . . . . 8 ⊢ (𝜓 → 𝑦𝑅𝑋) |
21 | 20 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦𝑅𝑋) |
22 | bnj1152 34974 | . . . . . . 7 ⊢ (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)) | |
23 | 19, 21, 22 | sylanbrc 582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅)) |
24 | 23, 18 | elind 4223 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
25 | 14, 24 | sseldd 4009 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
26 | 25 | ne0d 4365 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
27 | 5 | neeq1i 3011 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
28 | 26, 27 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≠ ∅) |
29 | bnj893 34904 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V) | |
30 | 1, 11, 29 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V) |
31 | inex1g 5337 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V) | |
32 | 5, 31 | eqeltrid 2848 | . . 3 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V) |
33 | 30, 32 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ V) |
34 | 4, 10, 28, 33 | bnj951 34751 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Fr wfr 5649 ∧ w-bnj17 34662 predc-bnj14 34664 Se w-bnj13 34666 FrSe w-bnj15 34668 trClc-bnj18 34670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-bnj17 34663 df-bnj14 34665 df-bnj13 34667 df-bnj15 34669 df-bnj18 34671 |
This theorem is referenced by: bnj1190 34984 |
Copyright terms: Public domain | W3C validator |