Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1177 Structured version   Visualization version   GIF version

Theorem bnj1177 33283
Description: Technical lemma for bnj69 33287. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1177.2 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
bnj1177.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1177.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1177.13 ((𝜑𝜓) → 𝐵𝐴)
bnj1177.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1177 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))

Proof of Theorem bnj1177
StepHypRef Expression
1 bnj1177.9 . . 3 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
2 df-bnj15 32970 . . . 4 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
32simplbi 499 . . 3 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
41, 3syl 17 . 2 ((𝜑𝜓) → 𝑅 Fr 𝐴)
5 bnj1177.3 . . . 4 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
6 bnj1147 33271 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
7 ssinss1 4188 . . . . 5 ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴)
86, 7ax-mp 5 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴
95, 8eqsstri 3969 . . 3 𝐶𝐴
109a1i 11 . 2 ((𝜑𝜓) → 𝐶𝐴)
11 bnj1177.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
12 bnj906 33207 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
131, 11, 12syl2anc 585 . . . . . 6 ((𝜑𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1413ssrind 4186 . . . . 5 ((𝜑𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
15 bnj1177.13 . . . . . . . 8 ((𝜑𝜓) → 𝐵𝐴)
16 bnj1177.2 . . . . . . . . . 10 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
1716simp2bi 1146 . . . . . . . . 9 (𝜓𝑦𝐵)
1817adantl 483 . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
1915, 18sseldd 3936 . . . . . . 7 ((𝜑𝜓) → 𝑦𝐴)
2016simp3bi 1147 . . . . . . . 8 (𝜓𝑦𝑅𝑋)
2120adantl 483 . . . . . . 7 ((𝜑𝜓) → 𝑦𝑅𝑋)
22 bnj1152 33275 . . . . . . 7 (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦𝐴𝑦𝑅𝑋))
2319, 21, 22sylanbrc 584 . . . . . 6 ((𝜑𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅))
2423, 18elind 4145 . . . . 5 ((𝜑𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2514, 24sseldd 3936 . . . 4 ((𝜑𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2625ne0d 4286 . . 3 ((𝜑𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
275neeq1i 3006 . . 3 (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
2826, 27sylibr 233 . 2 ((𝜑𝜓) → 𝐶 ≠ ∅)
29 bnj893 33205 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
301, 11, 29syl2anc 585 . . 3 ((𝜑𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
31 inex1g 5267 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V)
325, 31eqeltrid 2842 . . 3 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V)
3330, 32syl 17 . 2 ((𝜑𝜓) → 𝐶 ∈ V)
344, 10, 28, 33bnj951 33052 1 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  Vcvv 3442  cin 3900  wss 3901  c0 4273   class class class wbr 5096   Fr wfr 5576  w-bnj17 32963   predc-bnj14 32965   Se w-bnj13 32967   FrSe w-bnj15 32969   trClc-bnj18 32971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-reg 9453  ax-inf2 9502
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-om 7785  df-1o 8371  df-bnj17 32964  df-bnj14 32966  df-bnj13 32968  df-bnj15 32970  df-bnj18 32972
This theorem is referenced by:  bnj1190  33285
  Copyright terms: Public domain W3C validator