![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1177 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34009. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1177.2 | ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) |
bnj1177.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
bnj1177.9 | ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) |
bnj1177.13 | ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) |
bnj1177.17 | ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1177 | ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1177.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) | |
2 | df-bnj15 33692 | . . . 4 ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | |
3 | 2 | simplbi 498 | . . 3 ⊢ (𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴) |
4 | 1, 3 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 Fr 𝐴) |
5 | bnj1177.3 | . . . 4 ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) | |
6 | bnj1147 33993 | . . . . 5 ⊢ trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 | |
7 | ssinss1 4236 | . . . . 5 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 |
9 | 5, 8 | eqsstri 4015 | . . 3 ⊢ 𝐶 ⊆ 𝐴 |
10 | 9 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐴) |
11 | bnj1177.17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) | |
12 | bnj906 33929 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
13 | 1, 11, 12 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
14 | 13 | ssrind 4234 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
15 | bnj1177.13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) | |
16 | bnj1177.2 | . . . . . . . . . 10 ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) | |
17 | 16 | simp2bi 1146 | . . . . . . . . 9 ⊢ (𝜓 → 𝑦 ∈ 𝐵) |
18 | 17 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
19 | 15, 18 | sseldd 3982 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐴) |
20 | 16 | simp3bi 1147 | . . . . . . . 8 ⊢ (𝜓 → 𝑦𝑅𝑋) |
21 | 20 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦𝑅𝑋) |
22 | bnj1152 33997 | . . . . . . 7 ⊢ (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)) | |
23 | 19, 21, 22 | sylanbrc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅)) |
24 | 23, 18 | elind 4193 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
25 | 14, 24 | sseldd 3982 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
26 | 25 | ne0d 4334 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
27 | 5 | neeq1i 3005 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
28 | 26, 27 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≠ ∅) |
29 | bnj893 33927 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V) | |
30 | 1, 11, 29 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V) |
31 | inex1g 5318 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V) | |
32 | 5, 31 | eqeltrid 2837 | . . 3 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V) |
33 | 30, 32 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ V) |
34 | 4, 10, 28, 33 | bnj951 33774 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 Fr wfr 5627 ∧ w-bnj17 33685 predc-bnj14 33687 Se w-bnj13 33689 FrSe w-bnj15 33691 trClc-bnj18 33693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-reg 9583 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-bnj17 33686 df-bnj14 33688 df-bnj13 33690 df-bnj15 33692 df-bnj18 33694 |
This theorem is referenced by: bnj1190 34007 |
Copyright terms: Public domain | W3C validator |