Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1177 Structured version   Visualization version   GIF version

Theorem bnj1177 32886
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1177.2 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
bnj1177.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1177.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1177.13 ((𝜑𝜓) → 𝐵𝐴)
bnj1177.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1177 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))

Proof of Theorem bnj1177
StepHypRef Expression
1 bnj1177.9 . . 3 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
2 df-bnj15 32572 . . . 4 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
32simplbi 497 . . 3 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
41, 3syl 17 . 2 ((𝜑𝜓) → 𝑅 Fr 𝐴)
5 bnj1177.3 . . . 4 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
6 bnj1147 32874 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
7 ssinss1 4168 . . . . 5 ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴)
86, 7ax-mp 5 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴
95, 8eqsstri 3951 . . 3 𝐶𝐴
109a1i 11 . 2 ((𝜑𝜓) → 𝐶𝐴)
11 bnj1177.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
12 bnj906 32810 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
131, 11, 12syl2anc 583 . . . . . 6 ((𝜑𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1413ssrind 4166 . . . . 5 ((𝜑𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
15 bnj1177.13 . . . . . . . 8 ((𝜑𝜓) → 𝐵𝐴)
16 bnj1177.2 . . . . . . . . . 10 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
1716simp2bi 1144 . . . . . . . . 9 (𝜓𝑦𝐵)
1817adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
1915, 18sseldd 3918 . . . . . . 7 ((𝜑𝜓) → 𝑦𝐴)
2016simp3bi 1145 . . . . . . . 8 (𝜓𝑦𝑅𝑋)
2120adantl 481 . . . . . . 7 ((𝜑𝜓) → 𝑦𝑅𝑋)
22 bnj1152 32878 . . . . . . 7 (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦𝐴𝑦𝑅𝑋))
2319, 21, 22sylanbrc 582 . . . . . 6 ((𝜑𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅))
2423, 18elind 4124 . . . . 5 ((𝜑𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2514, 24sseldd 3918 . . . 4 ((𝜑𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2625ne0d 4266 . . 3 ((𝜑𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
275neeq1i 3007 . . 3 (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
2826, 27sylibr 233 . 2 ((𝜑𝜓) → 𝐶 ≠ ∅)
29 bnj893 32808 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
301, 11, 29syl2anc 583 . . 3 ((𝜑𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
31 inex1g 5238 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V)
325, 31eqeltrid 2843 . . 3 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V)
3330, 32syl 17 . 2 ((𝜑𝜓) → 𝐶 ∈ V)
344, 10, 28, 33bnj951 32655 1 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cin 3882  wss 3883  c0 4253   class class class wbr 5070   Fr wfr 5532  w-bnj17 32565   predc-bnj14 32567   Se w-bnj13 32569   FrSe w-bnj15 32571   trClc-bnj18 32573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-bnj17 32566  df-bnj14 32568  df-bnj13 32570  df-bnj15 32572  df-bnj18 32574
This theorem is referenced by:  bnj1190  32888
  Copyright terms: Public domain W3C validator