Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1177 Structured version   Visualization version   GIF version

Theorem bnj1177 31405
Description: Technical lemma for bnj69 31409. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1177.2 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
bnj1177.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1177.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1177.13 ((𝜑𝜓) → 𝐵𝐴)
bnj1177.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1177 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))

Proof of Theorem bnj1177
StepHypRef Expression
1 bnj1177.9 . . 3 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
2 df-bnj15 31092 . . . 4 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
32simplbi 485 . . 3 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
41, 3syl 17 . 2 ((𝜑𝜓) → 𝑅 Fr 𝐴)
5 bnj1177.3 . . . 4 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
6 bnj1147 31393 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
7 ssinss1 3990 . . . . 5 ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴)
86, 7ax-mp 5 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴
95, 8eqsstri 3784 . . 3 𝐶𝐴
109a1i 11 . 2 ((𝜑𝜓) → 𝐶𝐴)
11 bnj1177.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
12 bnj906 31331 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
131, 11, 12syl2anc 573 . . . . . 6 ((𝜑𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1413ssrind 3988 . . . . 5 ((𝜑𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
15 bnj1177.13 . . . . . . . 8 ((𝜑𝜓) → 𝐵𝐴)
16 bnj1177.2 . . . . . . . . . 10 (𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))
1716simp2bi 1140 . . . . . . . . 9 (𝜓𝑦𝐵)
1817adantl 467 . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
1915, 18sseldd 3753 . . . . . . 7 ((𝜑𝜓) → 𝑦𝐴)
2016simp3bi 1141 . . . . . . . 8 (𝜓𝑦𝑅𝑋)
2120adantl 467 . . . . . . 7 ((𝜑𝜓) → 𝑦𝑅𝑋)
22 bnj1152 31397 . . . . . . 7 (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦𝐴𝑦𝑅𝑋))
2319, 21, 22sylanbrc 572 . . . . . 6 ((𝜑𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅))
2423, 18elind 3949 . . . . 5 ((𝜑𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵))
2514, 24sseldd 3753 . . . 4 ((𝜑𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
26 ne0i 4069 . . . 4 (𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
2725, 26syl 17 . . 3 ((𝜑𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
285neeq1i 3007 . . 3 (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅)
2927, 28sylibr 224 . 2 ((𝜑𝜓) → 𝐶 ≠ ∅)
30 bnj893 31329 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
311, 11, 30syl2anc 573 . . 3 ((𝜑𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
32 inex1g 4935 . . . 4 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V)
335, 32syl5eqel 2854 . . 3 ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V)
3431, 33syl 17 . 2 ((𝜑𝜓) → 𝐶 ∈ V)
354, 10, 29, 34bnj951 31177 1 ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  cin 3722  wss 3723  c0 4063   class class class wbr 4786   Fr wfr 5205  w-bnj17 31085   predc-bnj14 31087   Se w-bnj13 31089   FrSe w-bnj15 31091   trClc-bnj18 31093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-reg 8651  ax-inf2 8700
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-om 7211  df-1o 7711  df-bnj17 31086  df-bnj14 31088  df-bnj13 31090  df-bnj15 31092  df-bnj18 31094
This theorem is referenced by:  bnj1190  31407
  Copyright terms: Public domain W3C validator