| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1177 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1177.2 | ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) |
| bnj1177.3 | ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
| bnj1177.9 | ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) |
| bnj1177.13 | ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) |
| bnj1177.17 | ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| bnj1177 | ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1177.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) | |
| 2 | df-bnj15 34676 | . . . 4 ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | |
| 3 | 2 | simplbi 497 | . . 3 ⊢ (𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 Fr 𝐴) |
| 5 | bnj1177.3 | . . . 4 ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) | |
| 6 | bnj1147 34977 | . . . . 5 ⊢ trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 | |
| 7 | ssinss1 4197 | . . . . 5 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 |
| 9 | 5, 8 | eqsstri 3982 | . . 3 ⊢ 𝐶 ⊆ 𝐴 |
| 10 | 9 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐴) |
| 11 | bnj1177.17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) | |
| 12 | bnj906 34913 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
| 13 | 1, 11, 12 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 14 | 13 | ssrind 4195 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵) ⊆ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
| 15 | bnj1177.13 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) | |
| 16 | bnj1177.2 | . . . . . . . . . 10 ⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) | |
| 17 | 16 | simp2bi 1146 | . . . . . . . . 9 ⊢ (𝜓 → 𝑦 ∈ 𝐵) |
| 18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
| 19 | 15, 18 | sseldd 3936 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐴) |
| 20 | 16 | simp3bi 1147 | . . . . . . . 8 ⊢ (𝜓 → 𝑦𝑅𝑋) |
| 21 | 20 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑦𝑅𝑋) |
| 22 | bnj1152 34981 | . . . . . . 7 ⊢ (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)) | |
| 23 | 19, 21, 22 | sylanbrc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅)) |
| 24 | 23, 18 | elind 4151 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( pred(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
| 25 | 14, 24 | sseldd 3936 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
| 26 | 25 | ne0d 4293 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
| 27 | 5 | neeq1i 2989 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅) |
| 28 | 26, 27 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≠ ∅) |
| 29 | bnj893 34911 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V) | |
| 30 | 1, 11, 29 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → trCl(𝑋, 𝐴, 𝑅) ∈ V) |
| 31 | inex1g 5258 | . . . 4 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ∈ V) | |
| 32 | 5, 31 | eqeltrid 2832 | . . 3 ⊢ ( trCl(𝑋, 𝐴, 𝑅) ∈ V → 𝐶 ∈ V) |
| 33 | 30, 32 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ V) |
| 34 | 4, 10, 28, 33 | bnj951 34758 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 Fr wfr 5569 ∧ w-bnj17 34669 predc-bnj14 34671 Se w-bnj13 34673 FrSe w-bnj15 34675 trClc-bnj18 34677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-bnj17 34670 df-bnj14 34672 df-bnj13 34674 df-bnj15 34676 df-bnj18 34678 |
| This theorem is referenced by: bnj1190 34991 |
| Copyright terms: Public domain | W3C validator |