| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1364 | Structured version Visualization version GIF version | ||
| Description: Property of FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1364 | ⊢ (𝑅 FrSe 𝐴 → 𝑅 Se 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bnj15 34729 | . 2 ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 FrSe 𝐴 → 𝑅 Se 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fr wfr 5608 Se w-bnj13 34726 FrSe w-bnj15 34728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-bnj15 34729 |
| This theorem is referenced by: bnj1489 35092 |
| Copyright terms: Public domain | W3C validator |