Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1364 Structured version   Visualization version   GIF version

Theorem bnj1364 32908
Description: Property of FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1364 (𝑅 FrSe 𝐴𝑅 Se 𝐴)

Proof of Theorem bnj1364
StepHypRef Expression
1 df-bnj15 32572 . 2 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
21simprbi 496 1 (𝑅 FrSe 𝐴𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Fr wfr 5532   Se w-bnj13 32569   FrSe w-bnj15 32571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-bnj15 32572
This theorem is referenced by:  bnj1489  32936
  Copyright terms: Public domain W3C validator