| Metamath
Proof Explorer Theorem List (p. 341 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | crrh 34001 | Map the real numbers into a complete field. |
| class ℝHom | ||
| Syntax | crrext 34002 | Extend class notation with the class of extension fields of ℝ. |
| class ℝExt | ||
| Definition | df-rrh 34003 | Define the canonical homomorphism from the real numbers to any complete field, as the extension by continuity of the canonical homomorphism from the rational numbers. (Contributed by Mario Carneiro, 22-Oct-2017.) (Revised by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | ||
| Theorem | rrhval 34004 | Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) | ||
| Theorem | rrhcn 34005 | If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) & ⊢ (𝜑 → 𝑅 ∈ CUnifSp) & ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) ⇒ ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | rrhf 34006 | If the topology of 𝑅 is Hausdorff, Cauchy sequences have at most one limit, i.e. the canonical homomorphism of ℝ into 𝑅 is a function. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
| ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) & ⊢ (𝜑 → 𝑅 ∈ CUnifSp) & ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) ⇒ ⊢ (𝜑 → (ℝHom‘𝑅):ℝ⟶𝐵) | ||
| Definition | df-rrext 34007 | Define the class of extensions of ℝ. This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of ℝ into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (ℤ, ℚ and ℝ). It would be interesting see if this is formally treated in the literature. See isrrext 34008 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} | ||
| Theorem | isrrext 34008 | Express the property "𝑅 is an extension of ℝ". (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) | ||
| Theorem | rrextnrg 34009 | An extension of ℝ is a normed ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | ||
| Theorem | rrextdrg 34010 | An extension of ℝ is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | ||
| Theorem | rrextnlm 34011 | The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) | ||
| Theorem | rrextchr 34012 | The ring characteristic of an extension of ℝ is zero. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) | ||
| Theorem | rrextcusp 34013 | An extension of ℝ is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) | ||
| Theorem | rrexttps 34014 | An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) | ||
| Theorem | rrexthaus 34015 | The topology of an extension of ℝ is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) | ||
| Theorem | rrextust 34016 | The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ⇒ ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) | ||
| Theorem | rerrext 34017 | The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ ℝfld ∈ ℝExt | ||
| Theorem | cnrrext 34018 | The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ ℂfld ∈ ℝExt | ||
| Theorem | qqtopn 34019 | The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
| ⊢ ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂfld ↾s ℚ)) | ||
| Theorem | rrhfe 34020 | If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is a function. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅):ℝ⟶𝐵) | ||
| Theorem | rrhcne 34021 | If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is continuous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | rrhqima 34022 | The ℝHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄)) | ||
| Theorem | rrh0 34023 | The image of 0 by the ℝHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) | ||
| Syntax | cxrh 34024 | Map the extended real numbers into a complete lattice. |
| class ℝ*Hom | ||
| Definition | df-xrh 34025* | Define an embedding from the extended real number into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | ||
| Theorem | xrhval 34026* | The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) & ⊢ 𝐿 = (glb‘𝑅) & ⊢ 𝑈 = (lub‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) | ||
| Theorem | zrhre 34027 | The ℤRHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.) |
| ⊢ (ℤRHom‘ℝfld) = ( I ↾ ℤ) | ||
| Theorem | qqhre 34028 | The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.) |
| ⊢ (ℚHom‘ℝfld) = ( I ↾ ℚ) | ||
| Theorem | rrhre 34029 | The ℝHom homomorphism for the real numbers structure is the identity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ (ℝHom‘ℝfld) = ( I ↾ ℝ) | ||
Found this and was curious about how manifolds would be expressed in set.mm: https://mathoverflow.net/questions/336367/real-manifolds-in-a-theorem-prover This chapter proposes to define first manifold topologies, which characterize topological manifolds, and then to extend the structure with presentations, i.e., equivalence classes of atlases for a given topological space. We suggest to use the extensible structures to define the "topological space" aspect of topological manifolds, and then extend it with charts/presentations. | ||
| Syntax | cmntop 34030 | The class of n-manifold topologies. |
| class ManTop | ||
| Definition | df-mntop 34031* | Define the class of 𝑁-manifold topologies, as second countable Hausdorff topologies locally homeomorphic to a ball of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 22-Dec-2019.) |
| ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | ||
| Theorem | relmntop 34032 | Manifold is a relation. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
| ⊢ Rel ManTop | ||
| Theorem | ismntoplly 34033 | Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐽 ∈ 𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) | ||
| Theorem | ismntop 34034* | Property of being a manifold. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐽 ∈ 𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃ (TopOpen‘(𝔼hil‘𝑁)))))) | ||
| Syntax | cesum 34035 | Extend class notation to include infinite summations. |
| class Σ*𝑘 ∈ 𝐴𝐵 | ||
| Definition | df-esum 34036 | Define a short-hand for the possibly infinite sum over the extended nonnegative reals. Σ* is relying on the properties of the tsums, developed by Mario Carneiro. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
| ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | ||
| Theorem | esumex 34037 | An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
| ⊢ Σ*𝑘 ∈ 𝐴𝐵 ∈ V | ||
| Theorem | esumcl 34038* | Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) | ||
| Theorem | esumeq12dvaf 34039 | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) | ||
| Theorem | esumeq12dva 34040* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) (Revised by Thierry Arnoux, 29-Jun-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) | ||
| Theorem | esumeq12d 34041* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) | ||
| Theorem | esumeq1 34042* | Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
| ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) | ||
| Theorem | esumeq1d 34043 | Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) | ||
| Theorem | esumeq2 34044* | Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | esumeq2d 34045 | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | esumeq2dv 34046* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | esumeq2sdv 34047* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | nfesum1 34048 | Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘Σ*𝑘 ∈ 𝐴𝐵 | ||
| Theorem | nfesum2 34049* | Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 | ||
| Theorem | cbvesum 34050* | Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑘𝐵 & ⊢ Ⅎ𝑗𝐶 ⇒ ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 | ||
| Theorem | cbvesumv 34051* | Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 | ||
| Theorem | esumid 34052 | Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = 𝐶) | ||
| Theorem | esumgsum 34053 | A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) | ||
| Theorem | esumval 34054* | Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )) | ||
| Theorem | esumel 34055* | The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) | ||
| Theorem | esumnul 34056 | Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
| ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 | ||
| Theorem | esum0 34057* | Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) | ||
| Theorem | esumf1o 34058* | Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐵 & ⊢ Ⅎ𝑘𝐷 & ⊢ Ⅎ𝑛𝐴 & ⊢ Ⅎ𝑛𝐶 & ⊢ Ⅎ𝑛𝐹 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑛 ∈ 𝐶𝐷) | ||
| Theorem | esumc 34059* | Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.) |
| ⊢ Ⅎ𝑘𝐷 & ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) | ||
| Theorem | esumrnmpt 34060* | Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.) |
| ⊢ Ⅎ𝑘𝐴 & ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) | ||
| Theorem | esumsplit 34061 | Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶)) | ||
| Theorem | esummono 34062* | Extended sum is monotonic. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐶𝐵) | ||
| Theorem | esumpad 34063* | Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | esumpad2 34064* | Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | esumadd 34065* | Addition of infinite sums. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) | ||
| Theorem | esumle 34066* | If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | gsumesum 34067* | Relate a group sum on (ℝ*𝑠 ↾s (0[,]+∞)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑘 ∈ 𝐴𝐵) | ||
| Theorem | esumlub 34068* | The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝑋 ∈ ℝ*) & ⊢ (𝜑 → 𝑋 < Σ*𝑘 ∈ 𝐴𝐵) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘 ∈ 𝑎𝐵) | ||
| Theorem | esumaddf 34069* | Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) | ||
| Theorem | esumlef 34070* | If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) | ||
| Theorem | esumcst 34071* | The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.) |
| ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑘𝐵 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 = ((♯‘𝐴) ·e 𝐵)) | ||
| Theorem | esumsnf 34072* | The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.) |
| ⊢ Ⅎ𝑘𝐵 & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | esumsn 34073* | The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Shortened by Thierry Arnoux, 2-May-2020.) |
| ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | esumpr 34074* | Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
| ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) | ||
| Theorem | esumpr2 34075* | Extended sum over a pair, with a relaxed condition compared to esumpr 34074. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
| ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞))) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) | ||
| Theorem | esumrnmpt2 34076* | Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020.) |
| ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) | ||
| Theorem | esumfzf 34077* | Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.) |
| ⊢ Ⅎ𝑘𝐹 ⇒ ⊢ ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)) | ||
| Theorem | esumfsup 34078 | Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.) |
| ⊢ Ⅎ𝑘𝐹 ⇒ ⊢ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹‘𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < )) | ||
| Theorem | esumfsupre 34079 | Formulating an extended sum over integers using the recursive sequence builder. This version is limited to real-valued functions. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
| ⊢ Ⅎ𝑘𝐹 ⇒ ⊢ (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹‘𝑘) = sup(ran seq1( + , 𝐹), ℝ*, < )) | ||
| Theorem | esumss 34080 | Change the index set to a subset by adding zeroes. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) | ||
| Theorem | esumpinfval 34081* | The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) | ||
| Theorem | esumpfinvallem 34082 | Lemma for esumpfinval 34083. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg 𝐹)) | ||
| Theorem | esumpfinval 34083* | The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | esumpfinvalf 34084 | Same as esumpfinval 34083, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.) |
| ⊢ Ⅎ𝑘𝐴 & ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | esumpinfsum 34085* | The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℝ*) & ⊢ (𝜑 → 0 < 𝑀) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) | ||
| Theorem | esumpcvgval 34086* | The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝑘 = 𝑙 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) | ||
| Theorem | esumpmono 34087* | The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) | ||
| Theorem | esumcocn 34088* | Lemma for esummulc2 34090 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) & ⊢ (𝜑 → (𝐶‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) ⇒ ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) | ||
| Theorem | esummulc1 34089* | An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e 𝐶)) | ||
| Theorem | esummulc2 34090* | An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (𝐶 ·e Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶 ·e 𝐵)) | ||
| Theorem | esumdivc 34091* | An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) | ||
| Theorem | hashf2 34092 | Lemma for hasheuni 34093. (Contributed by Thierry Arnoux, 19-Nov-2016.) |
| ⊢ ♯:V⟶(0[,]+∞) | ||
| Theorem | hasheuni 34093* | The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15730. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (♯‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(♯‘𝑥)) | ||
| Theorem | esumcvg 34094* | The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 15631. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
| ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝑚 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)Σ*𝑘 ∈ ℕ𝐴) | ||
| Theorem | esumcvg2 34095* | Simpler version of esumcvg 34094. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
| ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝑙 → 𝐴 = 𝐵) & ⊢ (𝑘 = 𝑚 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)(⇝𝑡‘𝐽)Σ*𝑘 ∈ ℕ𝐴) | ||
| Theorem | esumcvgsum 34096* | The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.) |
| ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ∈ ℝ) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) | ||
| Theorem | esumsup 34097* | Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < )) | ||
| Theorem | esumgect 34098* | "Send 𝑛 to +∞ " in an inequality with an extended sum. (Contributed by Thierry Arnoux, 24-May-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 ≤ 𝐵) | ||
| Theorem | esumcvgre 34099* | All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | ||
| Theorem | esum2dlem 34100* | Lemma for esum2d 34101 (finite case). (Contributed by Thierry Arnoux, 17-May-2020.) (Proof shortened by AV, 17-Sep-2021.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐹 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → Σ*𝑗 ∈ 𝐴Σ*𝑘 ∈ 𝐵𝐶 = Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |