Home | Metamath
Proof Explorer Theorem List (p. 341 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rightirr 34001 | No surreal is a member of its right set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ¬ 𝑋 ∈ ( R ‘𝑋) | ||
Theorem | left0s 34002 | The left set of 0s is empty. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ( L ‘ 0s ) = ∅ | ||
Theorem | right0s 34003 | The right set of 0s is empty. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ( R ‘ 0s ) = ∅ | ||
Theorem | lrold 34004 | The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday ‘𝐴)) | ||
Theorem | madebdaylemold 34005* | Lemma for madebday 34007. If the inductive hypothesis of madebday 34007 is satisfied, the converse of oldbdayim 33998 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) | ||
Theorem | madebdaylemlrcut 34006* | Lemma for madebday 34007. If the inductive hypothesis of madebday 34007 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 34010 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | ||
Theorem | madebday 34007 | A surreal is part of the set made by ordinal 𝐴 iff its birthday is less than or equal to 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday ‘𝑋) ⊆ 𝐴)) | ||
Theorem | oldbday 34008 | A surreal is part of the set older than ordinal 𝐴 iff its birthday is less than 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) | ||
Theorem | newbday 34009 | A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) | ||
Theorem | lrcut 34010 | A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | ||
Theorem | scutfo 34011 | The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ |s : <<s –onto→ No | ||
Theorem | sltn0 34012 | If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | ||
Theorem | lruneq 34013 | If two surreals share a birthday, then the union of their left and right sets are equal. (Contributed by Scott Fenton, 17-Sep-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) | ||
Theorem | sltlpss 34014 | If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌))) | ||
Theorem | cofsslt 34015* | If every element of 𝐴 is bounded by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ ((𝐴 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶) → 𝐴 <<s 𝐶) | ||
Theorem | coinitsslt 34016* | If 𝐵 is coinitial with 𝐶 and 𝐴 precedes 𝐶, then 𝐴 precedes 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ ((𝐵 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑦 ≤s 𝑥 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s 𝐵) | ||
Theorem | cofcut1 34017* | If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷. Then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
Theorem | cofcut2 34018* | If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
Theorem | cofcutr 34019* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋) and 𝐵 is coinitial with ( R ‘𝑋). Theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧)) | ||
Theorem | cofcutrtime 34020* | If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋)) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) | ||
Syntax | cnorec 34021 | Declare the syntax for surreal recursion of one variable. |
class norec (𝐹) | ||
Definition | df-norec 34022* | Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ norec (𝐹) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹) | ||
Theorem | lrrecval 34023* | The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship 𝑅 that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) | ||
Theorem | lrrecval2 34024* | Next, we establish an alternate expression for 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | ||
Theorem | lrrecpo 34025* | Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Po No | ||
Theorem | lrrecse 34026* | Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Se No | ||
Theorem | lrrecfr 34027* | Now we show that 𝑅 is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Fr No | ||
Theorem | lrrecpred 34028* | Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | ||
Theorem | noinds 34029* | Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ No → 𝜒) | ||
Theorem | norecfn 34030 | Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝐹 = norec (𝐺) ⇒ ⊢ 𝐹 Fn No | ||
Theorem | norecov 34031 | Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝐹 = norec (𝐺) ⇒ ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) | ||
Syntax | cnorec2 34032 | Declare the syntax for surreal recursion on two arguments. |
class norec2 (𝐹) | ||
Definition | df-norec2 34033* | Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ norec2 (𝐹) = frecs({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))}, ( No × No ), 𝐹) | ||
Theorem | noxpordpo 34034* | To get through most of the textbook defintions in surreal numbers we will need recursion on two variables. This set of theorems sets up the preconditions for double recursion. This theorem establishes the partial ordering. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Po ( No × No ) | ||
Theorem | noxpordfr 34035* | Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Fr ( No × No ) | ||
Theorem | noxpordse 34036* | Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Se ( No × No ) | ||
Theorem | noxpordpred 34037* | Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), 〈𝐴, 𝐵〉) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) | ||
Theorem | no2indslem 34038* | Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑐, 𝑑〉 ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st ‘𝑐)𝑅(1st ‘𝑑) ∨ (1st ‘𝑐) = (1st ‘𝑑)) ∧ ((2nd ‘𝑐)𝑅(2nd ‘𝑑) ∨ (2nd ‘𝑐) = (2nd ‘𝑑)) ∧ 𝑐 ≠ 𝑑))} & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) | ||
Theorem | no2inds 34039* | Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) | ||
Theorem | norec2fn 34040 | The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ 𝐹 = norec2 (𝐺) ⇒ ⊢ 𝐹 Fn ( No × No ) | ||
Theorem | norec2ov 34041 | The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ 𝐹 = norec2 (𝐺) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝐹𝐵) = (〈𝐴, 𝐵〉𝐺(𝐹 ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})))) | ||
Theorem | no3inds 34042* | Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → 𝜆) | ||
Syntax | cadds 34043 | Declare the syntax for surreal addition. |
class +s | ||
Syntax | cnegs 34044 | Declare the syntax for surreal negation. |
class -us | ||
Syntax | csubs 34045 | Declare the syntax for surreal subtraction. |
class -s | ||
Definition | df-adds 34046* | Define surreal addition. This is the first of the field operations on the surreals. Definition from [Conway] p. 5. Definition from [Gonshor] p. 13. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))) | ||
Definition | df-negs 34047* | Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) | ||
Definition | df-subs 34048* | Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | ||
Theorem | negsfn 34049 | Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ -us Fn No | ||
Theorem | negsval 34050 | The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | ||
Theorem | negs0s 34051 | Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ( -us ‘ 0s ) = 0s | ||
Theorem | addsfn 34052 | Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ +s Fn ( No × No ) | ||
Theorem | addsval 34053* | The value of surreal addition. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))) | ||
Theorem | addsid1 34054 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝐴 ∈ No → (𝐴 +s 0s ) = 𝐴) | ||
Theorem | addsid1d 34055 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s 0s ) = 𝐴) | ||
Theorem | addscom 34056 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | ||
Theorem | addscomd 34057 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | ||
Theorem | addscllem1 34058 | Lemma for addscl (future) Alternate expression for surreal addition. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵)))))) | ||
Syntax | ctxp 34059 | Declare the syntax for tail Cartesian product. |
class (𝐴 ⊗ 𝐵) | ||
Syntax | cpprod 34060 | Declare the syntax for the parallel product. |
class pprod(𝑅, 𝑆) | ||
Syntax | csset 34061 | Declare the subset relationship class. |
class SSet | ||
Syntax | ctrans 34062 | Declare the transitive set class. |
class Trans | ||
Syntax | cbigcup 34063 | Declare the set union relationship. |
class Bigcup | ||
Syntax | cfix 34064 | Declare the syntax for the fixpoints of a class. |
class Fix 𝐴 | ||
Syntax | climits 34065 | Declare the class of limit ordinals. |
class Limits | ||
Syntax | cfuns 34066 | Declare the syntax for the class of all function. |
class Funs | ||
Syntax | csingle 34067 | Declare the syntax for the singleton function. |
class Singleton | ||
Syntax | csingles 34068 | Declare the syntax for the class of all singletons. |
class Singletons | ||
Syntax | cimage 34069 | Declare the syntax for the image functor. |
class Image𝐴 | ||
Syntax | ccart 34070 | Declare the syntax for the cartesian function. |
class Cart | ||
Syntax | cimg 34071 | Declare the syntax for the image function. |
class Img | ||
Syntax | cdomain 34072 | Declare the syntax for the domain function. |
class Domain | ||
Syntax | crange 34073 | Declare the syntax for the range function. |
class Range | ||
Syntax | capply 34074 | Declare the syntax for the application function. |
class Apply | ||
Syntax | ccup 34075 | Declare the syntax for the cup function. |
class Cup | ||
Syntax | ccap 34076 | Declare the syntax for the cap function. |
class Cap | ||
Syntax | csuccf 34077 | Declare the syntax for the successor function. |
class Succ | ||
Syntax | cfunpart 34078 | Declare the syntax for the functional part functor. |
class Funpart𝐹 | ||
Syntax | cfullfn 34079 | Declare the syntax for the full function functor. |
class FullFun𝐹 | ||
Syntax | crestrict 34080 | Declare the syntax for the restriction function. |
class Restrict | ||
Syntax | cub 34081 | Declare the syntax for the upper bound relationship functor. |
class UB𝑅 | ||
Syntax | clb 34082 | Declare the syntax for the lower bound relationship functor. |
class LB𝑅 | ||
Definition | df-txp 34083 | Define the tail cross of two classes. Membership in this class is defined by txpss3v 34107 and brtxp 34109. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | ||
Definition | df-pprod 34084 | Define the parallel product of two classes. Membership in this class is defined by pprodss4v 34113 and brpprod 34114. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) | ||
Definition | df-sset 34085 | Define the subset class. For the value, see brsset 34118. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | ||
Definition | df-trans 34086 | Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | ||
Definition | df-bigcup 34087 | Define the Bigcup function, which, per fvbigcup 34131, carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | ||
Definition | df-fix 34088 | Define the class of all fixpoints of a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | ||
Definition | df-limits 34089 | Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | ||
Definition | df-funs 34090 | Define the class of all functions. See elfuns 34144 for membership. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ ◡ E ))) | ||
Definition | df-singleton 34091 | Define the singleton function. See brsingle 34146 for its value. (Contributed by Scott Fenton, 4-Apr-2014.) |
⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | ||
Definition | df-singles 34092 | Define the class of all singletons. See elsingles 34147 for membership. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ Singletons = ran Singleton | ||
Definition | df-image 34093 | Define the image functor. This function takes a set 𝐴 to a function 𝑥 ↦ (𝐴 “ 𝑥), providing that the latter exists. See imageval 34159 for the derivation. (Contributed by Scott Fenton, 27-Mar-2014.) |
⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | ||
Definition | df-cart 34094 | Define the cartesian product function. See brcart 34161 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | ||
Definition | df-img 34095 | Define the image function. See brimg 34166 for its value. (Contributed by Scott Fenton, 12-Apr-2014.) |
⊢ Img = (Image((2nd ∘ 1st ) ↾ (1st ↾ (V × V))) ∘ Cart) | ||
Definition | df-domain 34096 | Define the domain function. See brdomain 34162 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ Domain = Image(1st ↾ (V × V)) | ||
Definition | df-range 34097 | Define the range function. See brrange 34163 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ Range = Image(2nd ↾ (V × V)) | ||
Definition | df-cup 34098 | Define the little cup function. See brcup 34168 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
⊢ Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗ V))) | ||
Definition | df-cap 34099 | Define the little cap function. See brcap 34169 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
⊢ Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∩ (◡2nd ∘ E )) ⊗ V))) | ||
Definition | df-restrict 34100 | Define the restriction function. See brrestrict 34178 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
⊢ Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |