Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-cco | Structured version Visualization version GIF version |
Description: Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form ccoid 17133 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-cco | ⊢ comp = Slot ;15 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cco 16983 | . 2 class comp | |
2 | c1 10881 | . . . 4 class 1 | |
3 | c5 12040 | . . . 4 class 5 | |
4 | 2, 3 | cdc 12446 | . . 3 class ;15 |
5 | 4 | cslot 16891 | . 2 class Slot ;15 |
6 | 1, 5 | wceq 1539 | 1 wff comp = Slot ;15 |
Colors of variables: wff setvar class |
This definition is referenced by: ccondx 17132 ccoid 17133 catcoppcclOLD 17842 catcfucclOLD 17844 catcxpcclOLD 17934 |
Copyright terms: Public domain | W3C validator |