MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcxpcclOLD Structured version   Visualization version   GIF version

Theorem catcxpcclOLD 18277
Description: Obsolete proof of catcxpccl 18276 as of 14-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
catcxpccl.c 𝐶 = (CatCat‘𝑈)
catcxpccl.b 𝐵 = (Base‘𝐶)
catcxpccl.o 𝑇 = (𝑋 ×c 𝑌)
catcxpccl.u (𝜑𝑈 ∈ WUni)
catcxpccl.1 (𝜑 → ω ∈ 𝑈)
catcxpccl.x (𝜑𝑋𝐵)
catcxpccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcxpcclOLD (𝜑𝑇𝐵)

Proof of Theorem catcxpcclOLD
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcxpccl.o . . . . 5 𝑇 = (𝑋 ×c 𝑌)
2 eqid 2740 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2740 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2740 . . . . 5 (Hom ‘𝑋) = (Hom ‘𝑋)
5 eqid 2740 . . . . 5 (Hom ‘𝑌) = (Hom ‘𝑌)
6 eqid 2740 . . . . 5 (comp‘𝑋) = (comp‘𝑋)
7 eqid 2740 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
8 catcxpccl.x . . . . 5 (𝜑𝑋𝐵)
9 catcxpccl.y . . . . 5 (𝜑𝑌𝐵)
10 eqidd 2741 . . . . 5 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) = ((Base‘𝑋) × (Base‘𝑌)))
111, 2, 3xpcbas 18247 . . . . . . 7 ((Base‘𝑋) × (Base‘𝑌)) = (Base‘𝑇)
12 eqid 2740 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
131, 11, 4, 5, 12xpchomfval 18248 . . . . . 6 (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
1413a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))))
15 eqidd 2741 . . . . 5 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 18246 . . . 4 (𝜑𝑇 = {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 catcxpccl.u . . . . 5 (𝜑𝑈 ∈ WUni)
18 df-base 17259 . . . . . . 7 Base = Slot 1
19 catcxpccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
2017, 19wunndx 17242 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 17, 20wunstr 17235 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
22 catcxpccl.c . . . . . . . . . . 11 𝐶 = (CatCat‘𝑈)
23 catcxpccl.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
2422, 23, 17catcbas 18168 . . . . . . . . . 10 (𝜑𝐵 = (𝑈 ∩ Cat))
258, 24eleqtrd 2846 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
2625elin1d 4227 . . . . . . . 8 (𝜑𝑋𝑈)
2718, 17, 26wunstr 17235 . . . . . . 7 (𝜑 → (Base‘𝑋) ∈ 𝑈)
289, 24eleqtrd 2846 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
2928elin1d 4227 . . . . . . . 8 (𝜑𝑌𝑈)
3018, 17, 29wunstr 17235 . . . . . . 7 (𝜑 → (Base‘𝑌) ∈ 𝑈)
3117, 27, 30wunxp 10793 . . . . . 6 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) ∈ 𝑈)
3217, 21, 31wunop 10791 . . . . 5 (𝜑 → ⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩ ∈ 𝑈)
33 df-hom 17335 . . . . . . 7 Hom = Slot 14
3433, 17, 20wunstr 17235 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
3517, 31, 31wunxp 10793 . . . . . . . 8 (𝜑 → (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
3633, 17, 26wunstr 17235 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
3717, 36wunrn 10798 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑋) ∈ 𝑈)
3817, 37wununi 10775 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑋) ∈ 𝑈)
3933, 17, 29wunstr 17235 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑌) ∈ 𝑈)
4017, 39wunrn 10798 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑌) ∈ 𝑈)
4117, 40wununi 10775 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑌) ∈ 𝑈)
4217, 38, 41wunxp 10793 . . . . . . . . 9 (𝜑 → ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
4317, 42wunpw 10776 . . . . . . . 8 (𝜑 → 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
44 ovssunirn 7484 . . . . . . . . . . . . 13 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋)
45 ovssunirn 7484 . . . . . . . . . . . . 13 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)
46 xpss12 5715 . . . . . . . . . . . . 13 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋) ∧ ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)) → (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4744, 45, 46mp2an 691 . . . . . . . . . . . 12 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
48 ovex 7481 . . . . . . . . . . . . . 14 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ∈ V
49 ovex 7481 . . . . . . . . . . . . . 14 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ∈ V
5048, 49xpex 7788 . . . . . . . . . . . . 13 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ V
5150elpw 4626 . . . . . . . . . . . 12 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5247, 51mpbir 231 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5352rgen2w 3072 . . . . . . . . . 10 𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
54 eqid 2740 . . . . . . . . . . 11 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
5554fmpo 8109 . . . . . . . . . 10 (∀𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5653, 55mpbi 230 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5756a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5817, 35, 43, 57wunf 10796 . . . . . . 7 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) ∈ 𝑈)
5913, 58eqeltrid 2848 . . . . . 6 (𝜑 → (Hom ‘𝑇) ∈ 𝑈)
6017, 34, 59wunop 10791 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩ ∈ 𝑈)
61 df-cco 17336 . . . . . . 7 comp = Slot 15
6261, 17, 20wunstr 17235 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
6317, 35, 31wunxp 10793 . . . . . . 7 (𝜑 → ((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
6461, 17, 26wunstr 17235 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
6517, 64wunrn 10798 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
6617, 65wununi 10775 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
6717, 66wunrn 10798 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
6817, 67wununi 10775 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑋) ∈ 𝑈)
6917, 68wunpw 10776 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑋) ∈ 𝑈)
7061, 17, 29wunstr 17235 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
7117, 70wunrn 10798 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
7217, 71wununi 10775 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
7317, 72wunrn 10798 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
7417, 73wununi 10775 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
7517, 74wunpw 10776 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
7617, 69, 75wunxp 10793 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ 𝑈)
7717, 59wunrn 10798 . . . . . . . . . 10 (𝜑 → ran (Hom ‘𝑇) ∈ 𝑈)
7817, 77wununi 10775 . . . . . . . . 9 (𝜑 ran (Hom ‘𝑇) ∈ 𝑈)
7917, 78, 78wunxp 10793 . . . . . . . 8 (𝜑 → ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ 𝑈)
8017, 76, 79wunpm 10794 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ∈ 𝑈)
81 fvex 6933 . . . . . . . . . . . . . . . . 17 (comp‘𝑋) ∈ V
8281rnex 7950 . . . . . . . . . . . . . . . 16 ran (comp‘𝑋) ∈ V
8382uniex 7776 . . . . . . . . . . . . . . 15 ran (comp‘𝑋) ∈ V
8483rnex 7950 . . . . . . . . . . . . . 14 ran ran (comp‘𝑋) ∈ V
8584uniex 7776 . . . . . . . . . . . . 13 ran ran (comp‘𝑋) ∈ V
8685pwex 5398 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑋) ∈ V
87 fvex 6933 . . . . . . . . . . . . . . . . 17 (comp‘𝑌) ∈ V
8887rnex 7950 . . . . . . . . . . . . . . . 16 ran (comp‘𝑌) ∈ V
8988uniex 7776 . . . . . . . . . . . . . . 15 ran (comp‘𝑌) ∈ V
9089rnex 7950 . . . . . . . . . . . . . 14 ran ran (comp‘𝑌) ∈ V
9190uniex 7776 . . . . . . . . . . . . 13 ran ran (comp‘𝑌) ∈ V
9291pwex 5398 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑌) ∈ V
9386, 92xpex 7788 . . . . . . . . . . 11 (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V
94 fvex 6933 . . . . . . . . . . . . . 14 (Hom ‘𝑇) ∈ V
9594rnex 7950 . . . . . . . . . . . . 13 ran (Hom ‘𝑇) ∈ V
9695uniex 7776 . . . . . . . . . . . 12 ran (Hom ‘𝑇) ∈ V
9796, 96xpex 7788 . . . . . . . . . . 11 ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V
98 ovssunirn 7484 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))
99 ovssunirn 7484 . . . . . . . . . . . . . . . . 17 (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋)
100 rnss 5964 . . . . . . . . . . . . . . . . 17 ((⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
101 uniss 4939 . . . . . . . . . . . . . . . . 17 (ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
10299, 100, 101mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋)
10398, 102sstri 4018 . . . . . . . . . . . . . . 15 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋)
104 ovex 7481 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ V
105104elpw 4626 . . . . . . . . . . . . . . 15 (((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ↔ ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋))
106103, 105mpbir 231 . . . . . . . . . . . . . 14 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋)
107 ovssunirn 7484 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))
108 ovssunirn 7484 . . . . . . . . . . . . . . . . 17 (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌)
109 rnss 5964 . . . . . . . . . . . . . . . . 17 ((⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
110 uniss 4939 . . . . . . . . . . . . . . . . 17 (ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
111108, 109, 110mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌)
112107, 111sstri 4018 . . . . . . . . . . . . . . 15 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌)
113 ovex 7481 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ V
114113elpw 4626 . . . . . . . . . . . . . . 15 (((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌))
115112, 114mpbir 231 . . . . . . . . . . . . . 14 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)
116 opelxpi 5737 . . . . . . . . . . . . . 14 ((((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ∧ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
117106, 115, 116mp2an 691 . . . . . . . . . . . . 13 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
118117rgen2w 3072 . . . . . . . . . . . 12 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
119 eqid 2740 . . . . . . . . . . . . 13 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)
120119fmpo 8109 . . . . . . . . . . . 12 (∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↔ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
121118, 120mpbi 230 . . . . . . . . . . 11 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
122 ovssunirn 7484 . . . . . . . . . . . 12 ((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇)
123 fvssunirn 6953 . . . . . . . . . . . 12 ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)
124 xpss12 5715 . . . . . . . . . . . 12 ((((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇) ∧ ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)) → (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
125122, 123, 124mp2an 691 . . . . . . . . . . 11 (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))
126 elpm2r 8903 . . . . . . . . . . 11 ((((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V ∧ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V) ∧ ((𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∧ (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12793, 97, 121, 125, 126mp4an 692 . . . . . . . . . 10 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
128127rgen2w 3072 . . . . . . . . 9 𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
129 eqid 2740 . . . . . . . . . 10 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))
130129fmpo 8109 . . . . . . . . 9 (∀𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ↔ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
131128, 130mpbi 230 . . . . . . . 8 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
132131a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
13317, 63, 80, 132wunf 10796 . . . . . 6 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) ∈ 𝑈)
13417, 62, 133wunop 10791 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩ ∈ 𝑈)
13517, 32, 60, 134wuntp 10780 . . . 4 (𝜑 → {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩} ∈ 𝑈)
13616, 135eqeltrd 2844 . . 3 (𝜑𝑇𝑈)
13725elin2d 4228 . . . 4 (𝜑𝑋 ∈ Cat)
13828elin2d 4228 . . . 4 (𝜑𝑌 ∈ Cat)
1391, 137, 138xpccat 18259 . . 3 (𝜑𝑇 ∈ Cat)
140136, 139elind 4223 . 2 (𝜑𝑇 ∈ (𝑈 ∩ Cat))
141140, 24eleqtrrd 2847 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622  {ctp 4652  cop 4654   cuni 4931   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  1st c1st 8028  2nd c2nd 8029  pm cpm 8885  WUnicwun 10769  1c1 11185  4c4 12350  5c5 12351  cdc 12758  ndxcnx 17240  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  CatCatccatc 18165   ×c cxpc 18237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-wun 10771  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-plp 11052  df-ltp 11054  df-enr 11124  df-nr 11125  df-c 11190  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-catc 18166  df-xpc 18241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator