MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfucclOLD Structured version   Visualization version   GIF version

Theorem catcfucclOLD 18066
Description: Obsolete proof of catcfuccl 18065 as of 14-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
catcfuccl.c 𝐢 = (CatCatβ€˜π‘ˆ)
catcfuccl.b 𝐡 = (Baseβ€˜πΆ)
catcfuccl.o 𝑄 = (𝑋 FuncCat π‘Œ)
catcfuccl.u (πœ‘ β†’ π‘ˆ ∈ WUni)
catcfuccl.1 (πœ‘ β†’ Ο‰ ∈ π‘ˆ)
catcfuccl.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
catcfuccl.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
catcfucclOLD (πœ‘ β†’ 𝑄 ∈ 𝐡)

Proof of Theorem catcfucclOLD
Dummy variables π‘Ž 𝑏 𝑓 𝑔 β„Ž 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5 𝑄 = (𝑋 FuncCat π‘Œ)
2 eqid 2732 . . . . 5 (𝑋 Func π‘Œ) = (𝑋 Func π‘Œ)
3 eqid 2732 . . . . 5 (𝑋 Nat π‘Œ) = (𝑋 Nat π‘Œ)
4 eqid 2732 . . . . 5 (Baseβ€˜π‘‹) = (Baseβ€˜π‘‹)
5 eqid 2732 . . . . 5 (compβ€˜π‘Œ) = (compβ€˜π‘Œ)
6 catcfuccl.x . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝐡)
7 catcfuccl.c . . . . . . . 8 𝐢 = (CatCatβ€˜π‘ˆ)
8 catcfuccl.b . . . . . . . 8 𝐡 = (Baseβ€˜πΆ)
9 catcfuccl.u . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ WUni)
107, 8, 9catcbas 18047 . . . . . . 7 (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Cat))
116, 10eleqtrd 2835 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ (π‘ˆ ∩ Cat))
1211elin2d 4198 . . . . 5 (πœ‘ β†’ 𝑋 ∈ Cat)
13 catcfuccl.y . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ 𝐡)
1413, 10eleqtrd 2835 . . . . . 6 (πœ‘ β†’ π‘Œ ∈ (π‘ˆ ∩ Cat))
1514elin2d 4198 . . . . 5 (πœ‘ β†’ π‘Œ ∈ Cat)
16 eqidd 2733 . . . . 5 (πœ‘ β†’ (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
171, 2, 3, 4, 5, 12, 15, 16fucval 17906 . . . 4 (πœ‘ β†’ 𝑄 = {⟨(Baseβ€˜ndx), (𝑋 Func π‘Œ)⟩, ⟨(Hom β€˜ndx), (𝑋 Nat π‘Œ)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
18 df-base 17141 . . . . . . 7 Base = Slot 1
19 catcfuccl.1 . . . . . . . 8 (πœ‘ β†’ Ο‰ ∈ π‘ˆ)
209, 19wunndx 17124 . . . . . . 7 (πœ‘ β†’ ndx ∈ π‘ˆ)
2118, 9, 20wunstr 17117 . . . . . 6 (πœ‘ β†’ (Baseβ€˜ndx) ∈ π‘ˆ)
2211elin1d 4197 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
2314elin1d 4197 . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
249, 22, 23wunfunc 17845 . . . . . 6 (πœ‘ β†’ (𝑋 Func π‘Œ) ∈ π‘ˆ)
259, 21, 24wunop 10713 . . . . 5 (πœ‘ β†’ ⟨(Baseβ€˜ndx), (𝑋 Func π‘Œ)⟩ ∈ π‘ˆ)
26 df-hom 17217 . . . . . . 7 Hom = Slot 14
2726, 9, 20wunstr 17117 . . . . . 6 (πœ‘ β†’ (Hom β€˜ndx) ∈ π‘ˆ)
289, 22, 23wunnat 17903 . . . . . 6 (πœ‘ β†’ (𝑋 Nat π‘Œ) ∈ π‘ˆ)
299, 27, 28wunop 10713 . . . . 5 (πœ‘ β†’ ⟨(Hom β€˜ndx), (𝑋 Nat π‘Œ)⟩ ∈ π‘ˆ)
30 df-cco 17218 . . . . . . 7 comp = Slot 15
3130, 9, 20wunstr 17117 . . . . . 6 (πœ‘ β†’ (compβ€˜ndx) ∈ π‘ˆ)
329, 24, 24wunxp 10715 . . . . . . . 8 (πœ‘ β†’ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)) ∈ π‘ˆ)
339, 32, 24wunxp 10715 . . . . . . 7 (πœ‘ β†’ (((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)) Γ— (𝑋 Func π‘Œ)) ∈ π‘ˆ)
3430, 9, 23wunstr 17117 . . . . . . . . . . . . . 14 (πœ‘ β†’ (compβ€˜π‘Œ) ∈ π‘ˆ)
359, 34wunrn 10720 . . . . . . . . . . . . 13 (πœ‘ β†’ ran (compβ€˜π‘Œ) ∈ π‘ˆ)
369, 35wununi 10697 . . . . . . . . . . . 12 (πœ‘ β†’ βˆͺ ran (compβ€˜π‘Œ) ∈ π‘ˆ)
379, 36wunrn 10720 . . . . . . . . . . 11 (πœ‘ β†’ ran βˆͺ ran (compβ€˜π‘Œ) ∈ π‘ˆ)
389, 37wununi 10697 . . . . . . . . . 10 (πœ‘ β†’ βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ∈ π‘ˆ)
399, 38wunpw 10698 . . . . . . . . 9 (πœ‘ β†’ 𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ∈ π‘ˆ)
4018, 9, 22wunstr 17117 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘‹) ∈ π‘ˆ)
419, 39, 40wunmap 10717 . . . . . . . 8 (πœ‘ β†’ (𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ∈ π‘ˆ)
429, 28wunrn 10720 . . . . . . . . . 10 (πœ‘ β†’ ran (𝑋 Nat π‘Œ) ∈ π‘ˆ)
439, 42wununi 10697 . . . . . . . . 9 (πœ‘ β†’ βˆͺ ran (𝑋 Nat π‘Œ) ∈ π‘ˆ)
449, 43, 43wunxp 10715 . . . . . . . 8 (πœ‘ β†’ (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)) ∈ π‘ˆ)
459, 41, 44wunpm 10716 . . . . . . 7 (πœ‘ β†’ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))) ∈ π‘ˆ)
46 fvex 6901 . . . . . . . . . . 11 (1st β€˜π‘£) ∈ V
47 fvex 6901 . . . . . . . . . . . . . 14 (2nd β€˜π‘£) ∈ V
48 ovex 7438 . . . . . . . . . . . . . . . . 17 (𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ∈ V
49 ovex 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑋 Nat π‘Œ) ∈ V
5049rnex 7899 . . . . . . . . . . . . . . . . . . 19 ran (𝑋 Nat π‘Œ) ∈ V
5150uniex 7727 . . . . . . . . . . . . . . . . . 18 βˆͺ ran (𝑋 Nat π‘Œ) ∈ V
5251, 51xpex 7736 . . . . . . . . . . . . . . . . 17 (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)) ∈ V
53 eqid 2732 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) = (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))
54 ovssunirn 7441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) βŠ† βˆͺ ran (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))
55 ovssunirn 7441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯)) βŠ† βˆͺ ran (compβ€˜π‘Œ)
56 rnss 5936 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯)) βŠ† βˆͺ ran (compβ€˜π‘Œ) β†’ ran (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯)) βŠ† ran βˆͺ ran (compβ€˜π‘Œ))
57 uniss 4915 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯)) βŠ† ran βˆͺ ran (compβ€˜π‘Œ) β†’ βˆͺ ran (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran (compβ€˜π‘Œ))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 βˆͺ ran (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran (compβ€˜π‘Œ)
5954, 58sstri 3990 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran (compβ€˜π‘Œ)
60 ovex 7438 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) ∈ V
6160elpw 4605 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) ∈ 𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↔ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran (compβ€˜π‘Œ))
6259, 61mpbir 230 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) ∈ 𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ (Baseβ€˜π‘‹) β†’ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) ∈ 𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ))
6453, 63fmpti 7108 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))):(Baseβ€˜π‘‹)βŸΆπ’« βˆͺ ran βˆͺ ran (compβ€˜π‘Œ)
65 fvex 6901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (compβ€˜π‘Œ) ∈ V
6665rnex 7899 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran (compβ€˜π‘Œ) ∈ V
6766uniex 7727 . . . . . . . . . . . . . . . . . . . . . . . 24 βˆͺ ran (compβ€˜π‘Œ) ∈ V
6867rnex 7899 . . . . . . . . . . . . . . . . . . . . . . 23 ran βˆͺ ran (compβ€˜π‘Œ) ∈ V
6968uniex 7727 . . . . . . . . . . . . . . . . . . . . . 22 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ∈ V
7069pwex 5377 . . . . . . . . . . . . . . . . . . . . 21 𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ∈ V
71 fvex 6901 . . . . . . . . . . . . . . . . . . . . 21 (Baseβ€˜π‘‹) ∈ V
7270, 71elmap 8861 . . . . . . . . . . . . . . . . . . . 20 ((π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↔ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))):(Baseβ€˜π‘‹)βŸΆπ’« βˆͺ ran βˆͺ ran (compβ€˜π‘Œ))
7364, 72mpbir 230 . . . . . . . . . . . . . . . . . . 19 (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))
7473rgen2w 3066 . . . . . . . . . . . . . . . . . 18 βˆ€π‘ ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž)βˆ€π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔)(π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))
75 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = (𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))
7675fmpo 8050 . . . . . . . . . . . . . . . . . 18 (βˆ€π‘ ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž)βˆ€π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔)(π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↔ (𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))):((𝑔(𝑋 Nat π‘Œ)β„Ž) Γ— (𝑓(𝑋 Nat π‘Œ)𝑔))⟢(𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
7774, 76mpbi 229 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))):((𝑔(𝑋 Nat π‘Œ)β„Ž) Γ— (𝑓(𝑋 Nat π‘Œ)𝑔))⟢(𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))
78 ovssunirn 7441 . . . . . . . . . . . . . . . . . 18 (𝑔(𝑋 Nat π‘Œ)β„Ž) βŠ† βˆͺ ran (𝑋 Nat π‘Œ)
79 ovssunirn 7441 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋 Nat π‘Œ)𝑔) βŠ† βˆͺ ran (𝑋 Nat π‘Œ)
80 xpss12 5690 . . . . . . . . . . . . . . . . . 18 (((𝑔(𝑋 Nat π‘Œ)β„Ž) βŠ† βˆͺ ran (𝑋 Nat π‘Œ) ∧ (𝑓(𝑋 Nat π‘Œ)𝑔) βŠ† βˆͺ ran (𝑋 Nat π‘Œ)) β†’ ((𝑔(𝑋 Nat π‘Œ)β„Ž) Γ— (𝑓(𝑋 Nat π‘Œ)𝑔)) βŠ† (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))
8178, 79, 80mp2an 690 . . . . . . . . . . . . . . . . 17 ((𝑔(𝑋 Nat π‘Œ)β„Ž) Γ— (𝑓(𝑋 Nat π‘Œ)𝑔)) βŠ† (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))
82 elpm2r 8835 . . . . . . . . . . . . . . . . 17 ((((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ∈ V ∧ (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)) ∈ V) ∧ ((𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))):((𝑔(𝑋 Nat π‘Œ)β„Ž) Γ— (𝑓(𝑋 Nat π‘Œ)𝑔))⟢(𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ∧ ((𝑔(𝑋 Nat π‘Œ)β„Ž) Γ— (𝑓(𝑋 Nat π‘Œ)𝑔)) βŠ† (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))) β†’ (𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
8348, 52, 77, 81, 82mp4an 691 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))
8483sbcth 3791 . . . . . . . . . . . . . . 15 ((2nd β€˜π‘£) ∈ V β†’ [(2nd β€˜π‘£) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
85 sbcel1g 4412 . . . . . . . . . . . . . . 15 ((2nd β€˜π‘£) ∈ V β†’ ([(2nd β€˜π‘£) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))) ↔ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))))
8684, 85mpbid 231 . . . . . . . . . . . . . 14 ((2nd β€˜π‘£) ∈ V β†’ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
8747, 86ax-mp 5 . . . . . . . . . . . . 13 ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))
8887sbcth 3791 . . . . . . . . . . . 12 ((1st β€˜π‘£) ∈ V β†’ [(1st β€˜π‘£) / 𝑓]⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
89 sbcel1g 4412 . . . . . . . . . . . 12 ((1st β€˜π‘£) ∈ V β†’ ([(1st β€˜π‘£) / 𝑓]⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))) ↔ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))))
9088, 89mpbid 231 . . . . . . . . . . 11 ((1st β€˜π‘£) ∈ V β†’ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
9146, 90ax-mp 5 . . . . . . . . . 10 ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))
9291rgen2w 3066 . . . . . . . . 9 βˆ€π‘£ ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ))βˆ€β„Ž ∈ (𝑋 Func π‘Œ)⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))
93 eqid 2732 . . . . . . . . . 10 (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
9493fmpo 8050 . . . . . . . . 9 (βˆ€π‘£ ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ))βˆ€β„Ž ∈ (𝑋 Func π‘Œ)⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) ∈ ((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))) ↔ (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))):(((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)) Γ— (𝑋 Func π‘Œ))⟢((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
9592, 94mpbi 229 . . . . . . . 8 (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))):(((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)) Γ— (𝑋 Func π‘Œ))⟢((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ)))
9695a1i 11 . . . . . . 7 (πœ‘ β†’ (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))):(((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)) Γ— (𝑋 Func π‘Œ))⟢((𝒫 βˆͺ ran βˆͺ ran (compβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↑pm (βˆͺ ran (𝑋 Nat π‘Œ) Γ— βˆͺ ran (𝑋 Nat π‘Œ))))
979, 33, 45, 96wunf 10718 . . . . . 6 (πœ‘ β†’ (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) ∈ π‘ˆ)
989, 31, 97wunop 10713 . . . . 5 (πœ‘ β†’ ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩ ∈ π‘ˆ)
999, 25, 29, 98wuntp 10702 . . . 4 (πœ‘ β†’ {⟨(Baseβ€˜ndx), (𝑋 Func π‘Œ)⟩, ⟨(Hom β€˜ndx), (𝑋 Nat π‘Œ)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑋 Func π‘Œ) Γ— (𝑋 Func π‘Œ)), β„Ž ∈ (𝑋 Func π‘Œ) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑋 Nat π‘Œ)β„Ž), π‘Ž ∈ (𝑓(𝑋 Nat π‘Œ)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‹) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘Œ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩} ∈ π‘ˆ)
10017, 99eqeltrd 2833 . . 3 (πœ‘ β†’ 𝑄 ∈ π‘ˆ)
1011, 12, 15fuccat 17919 . . 3 (πœ‘ β†’ 𝑄 ∈ Cat)
102100, 101elind 4193 . 2 (πœ‘ β†’ 𝑄 ∈ (π‘ˆ ∩ Cat))
103102, 10eleqtrrd 2836 1 (πœ‘ β†’ 𝑄 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  [wsbc 3776  β¦‹csb 3892   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  {ctp 4631  βŸ¨cop 4633  βˆͺ cuni 4907   ↦ cmpt 5230   Γ— cxp 5673  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Ο‰com 7851  1st c1st 7969  2nd c2nd 7970   ↑m cmap 8816   ↑pm cpm 8817  WUnicwun 10691  1c1 11107  4c4 12265  5c5 12266  cdc 12673  ndxcnx 17122  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604   Func cfunc 17800   Nat cnat 17888   FuncCat cfuc 17889  CatCatccatc 18044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-wun 10693  df-ni 10863  df-pli 10864  df-mi 10865  df-lti 10866  df-plpq 10899  df-mpq 10900  df-ltpq 10901  df-enq 10902  df-nq 10903  df-erq 10904  df-plq 10905  df-mq 10906  df-1nq 10907  df-rq 10908  df-ltnq 10909  df-np 10972  df-plp 10974  df-ltp 10976  df-enr 11046  df-nr 11047  df-c 11112  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-func 17804  df-nat 17890  df-fuc 17891  df-catc 18045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator