Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusgndx | Structured version Visualization version GIF version |
Description: Index value of the df-plusg 16973 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
plusgndx | ⊢ (+g‘ndx) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 16973 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 12044 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxarg 16895 | 1 ⊢ (+g‘ndx) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6435 2c2 12026 ndxcnx 16892 +gcplusg 16960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-1cn 10927 ax-addcl 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-om 7713 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-nn 11972 df-2 12034 df-slot 16881 df-ndx 16893 df-plusg 16973 |
This theorem is referenced by: plusgndxnn 16988 basendxltplusgndx 16989 basendxnplusgndxOLD 16991 grpbasex 16999 grpplusgx 17000 plusgndxnmulrndx 17005 rngstr 17006 starvndxnplusgndx 17013 scandxnplusgndx 17025 vscandxnplusgndx 17030 lmodstr 17033 ipndxnplusgndx 17041 tsetndxnplusgndx 17065 topgrpstr 17069 plendxnplusgndx 17079 dsndxnplusgndx 17098 slotsdifunifndx 17109 oppglemOLD 18953 mgplemOLD 19723 mgpressOLD 19734 rmodislmodOLD 20190 cnfldfunALTOLD 20609 slotsinbpsd 26800 slotslnbpsd 26801 |
Copyright terms: Public domain | W3C validator |