Detailed syntax breakdown of Definition df-cgr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ccgr 28906 | . 2
class
Cgr | 
| 2 |  | vx | . . . . . . . 8
setvar 𝑥 | 
| 3 | 2 | cv 1538 | . . . . . . 7
class 𝑥 | 
| 4 |  | vn | . . . . . . . . . 10
setvar 𝑛 | 
| 5 | 4 | cv 1538 | . . . . . . . . 9
class 𝑛 | 
| 6 |  | cee 28904 | . . . . . . . . 9
class
𝔼 | 
| 7 | 5, 6 | cfv 6560 | . . . . . . . 8
class
(𝔼‘𝑛) | 
| 8 | 7, 7 | cxp 5682 | . . . . . . 7
class
((𝔼‘𝑛)
× (𝔼‘𝑛)) | 
| 9 | 3, 8 | wcel 2107 | . . . . . 6
wff 𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) | 
| 10 |  | vy | . . . . . . . 8
setvar 𝑦 | 
| 11 | 10 | cv 1538 | . . . . . . 7
class 𝑦 | 
| 12 | 11, 8 | wcel 2107 | . . . . . 6
wff 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) | 
| 13 | 9, 12 | wa 395 | . . . . 5
wff (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) | 
| 14 |  | c1 11157 | . . . . . . . 8
class
1 | 
| 15 |  | cfz 13548 | . . . . . . . 8
class
... | 
| 16 | 14, 5, 15 | co 7432 | . . . . . . 7
class
(1...𝑛) | 
| 17 |  | vi | . . . . . . . . . . 11
setvar 𝑖 | 
| 18 | 17 | cv 1538 | . . . . . . . . . 10
class 𝑖 | 
| 19 |  | c1st 8013 | . . . . . . . . . . 11
class
1st | 
| 20 | 3, 19 | cfv 6560 | . . . . . . . . . 10
class
(1st ‘𝑥) | 
| 21 | 18, 20 | cfv 6560 | . . . . . . . . 9
class
((1st ‘𝑥)‘𝑖) | 
| 22 |  | c2nd 8014 | . . . . . . . . . . 11
class
2nd | 
| 23 | 3, 22 | cfv 6560 | . . . . . . . . . 10
class
(2nd ‘𝑥) | 
| 24 | 18, 23 | cfv 6560 | . . . . . . . . 9
class
((2nd ‘𝑥)‘𝑖) | 
| 25 |  | cmin 11493 | . . . . . . . . 9
class 
− | 
| 26 | 21, 24, 25 | co 7432 | . . . . . . . 8
class
(((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖)) | 
| 27 |  | c2 12322 | . . . . . . . 8
class
2 | 
| 28 |  | cexp 14103 | . . . . . . . 8
class
↑ | 
| 29 | 26, 27, 28 | co 7432 | . . . . . . 7
class
((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) | 
| 30 | 16, 29, 17 | csu 15723 | . . . . . 6
class
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) | 
| 31 | 11, 19 | cfv 6560 | . . . . . . . . . 10
class
(1st ‘𝑦) | 
| 32 | 18, 31 | cfv 6560 | . . . . . . . . 9
class
((1st ‘𝑦)‘𝑖) | 
| 33 | 11, 22 | cfv 6560 | . . . . . . . . . 10
class
(2nd ‘𝑦) | 
| 34 | 18, 33 | cfv 6560 | . . . . . . . . 9
class
((2nd ‘𝑦)‘𝑖) | 
| 35 | 32, 34, 25 | co 7432 | . . . . . . . 8
class
(((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖)) | 
| 36 | 35, 27, 28 | co 7432 | . . . . . . 7
class
((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) | 
| 37 | 16, 36, 17 | csu 15723 | . . . . . 6
class
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑦)‘𝑖) − ((2nd
‘𝑦)‘𝑖))↑2) | 
| 38 | 30, 37 | wceq 1539 | . . . . 5
wff
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) | 
| 39 | 13, 38 | wa 395 | . . . 4
wff ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) | 
| 40 |  | cn 12267 | . . . 4
class
ℕ | 
| 41 | 39, 4, 40 | wrex 3069 | . . 3
wff
∃𝑛 ∈
ℕ ((𝑥 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑦 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛))) ∧
Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) | 
| 42 | 41, 2, 10 | copab 5204 | . 2
class
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} | 
| 43 | 1, 42 | wceq 1539 | 1
wff Cgr =
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |