Detailed syntax breakdown of Definition df-cgr
Step | Hyp | Ref
| Expression |
1 | | ccgr 27303 |
. 2
class
Cgr |
2 | | vx |
. . . . . . . 8
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
6 | | cee 27301 |
. . . . . . . . 9
class
𝔼 |
7 | 5, 6 | cfv 6458 |
. . . . . . . 8
class
(𝔼‘𝑛) |
8 | 7, 7 | cxp 5598 |
. . . . . . 7
class
((𝔼‘𝑛)
× (𝔼‘𝑛)) |
9 | 3, 8 | wcel 2104 |
. . . . . 6
wff 𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
10 | | vy |
. . . . . . . 8
setvar 𝑦 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑦 |
12 | 11, 8 | wcel 2104 |
. . . . . 6
wff 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
13 | 9, 12 | wa 397 |
. . . . 5
wff (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) |
14 | | c1 10918 |
. . . . . . . 8
class
1 |
15 | | cfz 13285 |
. . . . . . . 8
class
... |
16 | 14, 5, 15 | co 7307 |
. . . . . . 7
class
(1...𝑛) |
17 | | vi |
. . . . . . . . . . 11
setvar 𝑖 |
18 | 17 | cv 1538 |
. . . . . . . . . 10
class 𝑖 |
19 | | c1st 7861 |
. . . . . . . . . . 11
class
1st |
20 | 3, 19 | cfv 6458 |
. . . . . . . . . 10
class
(1st ‘𝑥) |
21 | 18, 20 | cfv 6458 |
. . . . . . . . 9
class
((1st ‘𝑥)‘𝑖) |
22 | | c2nd 7862 |
. . . . . . . . . . 11
class
2nd |
23 | 3, 22 | cfv 6458 |
. . . . . . . . . 10
class
(2nd ‘𝑥) |
24 | 18, 23 | cfv 6458 |
. . . . . . . . 9
class
((2nd ‘𝑥)‘𝑖) |
25 | | cmin 11251 |
. . . . . . . . 9
class
− |
26 | 21, 24, 25 | co 7307 |
. . . . . . . 8
class
(((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖)) |
27 | | c2 12074 |
. . . . . . . 8
class
2 |
28 | | cexp 13828 |
. . . . . . . 8
class
↑ |
29 | 26, 27, 28 | co 7307 |
. . . . . . 7
class
((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) |
30 | 16, 29, 17 | csu 15442 |
. . . . . 6
class
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) |
31 | 11, 19 | cfv 6458 |
. . . . . . . . . 10
class
(1st ‘𝑦) |
32 | 18, 31 | cfv 6458 |
. . . . . . . . 9
class
((1st ‘𝑦)‘𝑖) |
33 | 11, 22 | cfv 6458 |
. . . . . . . . . 10
class
(2nd ‘𝑦) |
34 | 18, 33 | cfv 6458 |
. . . . . . . . 9
class
((2nd ‘𝑦)‘𝑖) |
35 | 32, 34, 25 | co 7307 |
. . . . . . . 8
class
(((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖)) |
36 | 35, 27, 28 | co 7307 |
. . . . . . 7
class
((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) |
37 | 16, 36, 17 | csu 15442 |
. . . . . 6
class
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑦)‘𝑖) − ((2nd
‘𝑦)‘𝑖))↑2) |
38 | 30, 37 | wceq 1539 |
. . . . 5
wff
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) |
39 | 13, 38 | wa 397 |
. . . 4
wff ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) |
40 | | cn 12019 |
. . . 4
class
ℕ |
41 | 39, 4, 40 | wrex 3071 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑥 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑦 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛))) ∧
Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) |
42 | 41, 2, 10 | copab 5143 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |
43 | 1, 42 | wceq 1539 |
1
wff Cgr =
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |