Detailed syntax breakdown of Definition df-cgr
| Step | Hyp | Ref
| Expression |
| 1 | | ccgr 28874 |
. 2
class
Cgr |
| 2 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑛 |
| 6 | | cee 28872 |
. . . . . . . . 9
class
𝔼 |
| 7 | 5, 6 | cfv 6536 |
. . . . . . . 8
class
(𝔼‘𝑛) |
| 8 | 7, 7 | cxp 5657 |
. . . . . . 7
class
((𝔼‘𝑛)
× (𝔼‘𝑛)) |
| 9 | 3, 8 | wcel 2109 |
. . . . . 6
wff 𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
| 10 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 12 | 11, 8 | wcel 2109 |
. . . . . 6
wff 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
| 13 | 9, 12 | wa 395 |
. . . . 5
wff (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) |
| 14 | | c1 11135 |
. . . . . . . 8
class
1 |
| 15 | | cfz 13529 |
. . . . . . . 8
class
... |
| 16 | 14, 5, 15 | co 7410 |
. . . . . . 7
class
(1...𝑛) |
| 17 | | vi |
. . . . . . . . . . 11
setvar 𝑖 |
| 18 | 17 | cv 1539 |
. . . . . . . . . 10
class 𝑖 |
| 19 | | c1st 7991 |
. . . . . . . . . . 11
class
1st |
| 20 | 3, 19 | cfv 6536 |
. . . . . . . . . 10
class
(1st ‘𝑥) |
| 21 | 18, 20 | cfv 6536 |
. . . . . . . . 9
class
((1st ‘𝑥)‘𝑖) |
| 22 | | c2nd 7992 |
. . . . . . . . . . 11
class
2nd |
| 23 | 3, 22 | cfv 6536 |
. . . . . . . . . 10
class
(2nd ‘𝑥) |
| 24 | 18, 23 | cfv 6536 |
. . . . . . . . 9
class
((2nd ‘𝑥)‘𝑖) |
| 25 | | cmin 11471 |
. . . . . . . . 9
class
− |
| 26 | 21, 24, 25 | co 7410 |
. . . . . . . 8
class
(((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖)) |
| 27 | | c2 12300 |
. . . . . . . 8
class
2 |
| 28 | | cexp 14084 |
. . . . . . . 8
class
↑ |
| 29 | 26, 27, 28 | co 7410 |
. . . . . . 7
class
((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) |
| 30 | 16, 29, 17 | csu 15707 |
. . . . . 6
class
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) |
| 31 | 11, 19 | cfv 6536 |
. . . . . . . . . 10
class
(1st ‘𝑦) |
| 32 | 18, 31 | cfv 6536 |
. . . . . . . . 9
class
((1st ‘𝑦)‘𝑖) |
| 33 | 11, 22 | cfv 6536 |
. . . . . . . . . 10
class
(2nd ‘𝑦) |
| 34 | 18, 33 | cfv 6536 |
. . . . . . . . 9
class
((2nd ‘𝑦)‘𝑖) |
| 35 | 32, 34, 25 | co 7410 |
. . . . . . . 8
class
(((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖)) |
| 36 | 35, 27, 28 | co 7410 |
. . . . . . 7
class
((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) |
| 37 | 16, 36, 17 | csu 15707 |
. . . . . 6
class
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑦)‘𝑖) − ((2nd
‘𝑦)‘𝑖))↑2) |
| 38 | 30, 37 | wceq 1540 |
. . . . 5
wff
Σ𝑖 ∈
(1...𝑛)((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) |
| 39 | 13, 38 | wa 395 |
. . . 4
wff ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) |
| 40 | | cn 12245 |
. . . 4
class
ℕ |
| 41 | 39, 4, 40 | wrex 3061 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑥 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑦 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛))) ∧
Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) |
| 42 | 41, 2, 10 | copab 5186 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |
| 43 | 1, 42 | wceq 1540 |
1
wff Cgr =
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |