![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version |
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over π space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elee | β’ (π β β β (π΄ β (πΌβπ) β π΄:(1...π)βΆβ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7425 | . . . . 5 β’ (π = π β (1...π) = (1...π)) | |
2 | 1 | oveq2d 7433 | . . . 4 β’ (π = π β (β βm (1...π)) = (β βm (1...π))) |
3 | df-ee 28759 | . . . 4 β’ πΌ = (π β β β¦ (β βm (1...π))) | |
4 | ovex 7450 | . . . 4 β’ (β βm (1...π)) β V | |
5 | 2, 3, 4 | fvmpt 7002 | . . 3 β’ (π β β β (πΌβπ) = (β βm (1...π))) |
6 | 5 | eleq2d 2811 | . 2 β’ (π β β β (π΄ β (πΌβπ) β π΄ β (β βm (1...π)))) |
7 | reex 11229 | . . 3 β’ β β V | |
8 | ovex 7450 | . . 3 β’ (1...π) β V | |
9 | 7, 8 | elmap 8888 | . 2 β’ (π΄ β (β βm (1...π)) β π΄:(1...π)βΆβ) |
10 | 6, 9 | bitrdi 286 | 1 β’ (π β β β (π΄ β (πΌβπ) β π΄:(1...π)βΆβ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βΆwf 6543 βcfv 6547 (class class class)co 7417 βm cmap 8843 βcr 11137 1c1 11139 βcn 12242 ...cfz 13516 πΌcee 28756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-map 8845 df-ee 28759 |
This theorem is referenced by: mptelee 28763 eleei 28765 axlowdimlem5 28814 axlowdimlem7 28816 axlowdimlem10 28819 axlowdimlem14 28823 axlowdim1 28827 elntg2 28853 |
Copyright terms: Public domain | W3C validator |