MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elee Structured version   Visualization version   GIF version

Theorem elee 28821
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
elee (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))

Proof of Theorem elee
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21oveq2d 7403 . . . 4 (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
3 df-ee 28818 . . . 4 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
4 ovex 7420 . . . 4 (ℝ ↑m (1...𝑁)) ∈ V
52, 3, 4fvmpt 6968 . . 3 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁)))
65eleq2d 2814 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁))))
7 reex 11159 . . 3 ℝ ∈ V
8 ovex 7420 . . 3 (1...𝑁) ∈ V
97, 8elmap 8844 . 2 (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ)
106, 9bitrdi 287 1 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  1c1 11069  cn 12186  ...cfz 13468  𝔼cee 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ee 28818
This theorem is referenced by:  mptelee  28822  eleei  28824  axlowdimlem5  28873  axlowdimlem7  28875  axlowdimlem10  28878  axlowdimlem14  28882  axlowdim1  28886  elntg2  28912
  Copyright terms: Public domain W3C validator