![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version |
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over π space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elee | β’ (π β β β (π΄ β (πΌβπ) β π΄:(1...π)βΆβ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7422 | . . . . 5 β’ (π = π β (1...π) = (1...π)) | |
2 | 1 | oveq2d 7430 | . . . 4 β’ (π = π β (β βm (1...π)) = (β βm (1...π))) |
3 | df-ee 28689 | . . . 4 β’ πΌ = (π β β β¦ (β βm (1...π))) | |
4 | ovex 7447 | . . . 4 β’ (β βm (1...π)) β V | |
5 | 2, 3, 4 | fvmpt 6999 | . . 3 β’ (π β β β (πΌβπ) = (β βm (1...π))) |
6 | 5 | eleq2d 2814 | . 2 β’ (π β β β (π΄ β (πΌβπ) β π΄ β (β βm (1...π)))) |
7 | reex 11221 | . . 3 β’ β β V | |
8 | ovex 7447 | . . 3 β’ (1...π) β V | |
9 | 7, 8 | elmap 8881 | . 2 β’ (π΄ β (β βm (1...π)) β π΄:(1...π)βΆβ) |
10 | 6, 9 | bitrdi 287 | 1 β’ (π β β β (π΄ β (πΌβπ) β π΄:(1...π)βΆβ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1534 β wcel 2099 βΆwf 6538 βcfv 6542 (class class class)co 7414 βm cmap 8836 βcr 11129 1c1 11131 βcn 12234 ...cfz 13508 πΌcee 28686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8838 df-ee 28689 |
This theorem is referenced by: mptelee 28693 eleei 28695 axlowdimlem5 28744 axlowdimlem7 28746 axlowdimlem10 28749 axlowdimlem14 28753 axlowdim1 28757 elntg2 28783 |
Copyright terms: Public domain | W3C validator |