MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elee Structured version   Visualization version   GIF version

Theorem elee 28692
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
elee (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴:(1...𝑁)βŸΆβ„))

Proof of Theorem elee
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7422 . . . . 5 (𝑛 = 𝑁 β†’ (1...𝑛) = (1...𝑁))
21oveq2d 7430 . . . 4 (𝑛 = 𝑁 β†’ (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
3 df-ee 28689 . . . 4 𝔼 = (𝑛 ∈ β„• ↦ (ℝ ↑m (1...𝑛)))
4 ovex 7447 . . . 4 (ℝ ↑m (1...𝑁)) ∈ V
52, 3, 4fvmpt 6999 . . 3 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (ℝ ↑m (1...𝑁)))
65eleq2d 2814 . 2 (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁))))
7 reex 11221 . . 3 ℝ ∈ V
8 ovex 7447 . . 3 (1...𝑁) ∈ V
97, 8elmap 8881 . 2 (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)βŸΆβ„)
106, 9bitrdi 287 1 (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴:(1...𝑁)βŸΆβ„))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1534   ∈ wcel 2099  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414   ↑m cmap 8836  β„cr 11129  1c1 11131  β„•cn 12234  ...cfz 13508  π”Όcee 28686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8838  df-ee 28689
This theorem is referenced by:  mptelee  28693  eleei  28695  axlowdimlem5  28744  axlowdimlem7  28746  axlowdimlem10  28749  axlowdimlem14  28753  axlowdim1  28757  elntg2  28783
  Copyright terms: Public domain W3C validator