MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elee Structured version   Visualization version   GIF version

Theorem elee 28762
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
elee (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴:(1...𝑁)βŸΆβ„))

Proof of Theorem elee
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7425 . . . . 5 (𝑛 = 𝑁 β†’ (1...𝑛) = (1...𝑁))
21oveq2d 7433 . . . 4 (𝑛 = 𝑁 β†’ (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
3 df-ee 28759 . . . 4 𝔼 = (𝑛 ∈ β„• ↦ (ℝ ↑m (1...𝑛)))
4 ovex 7450 . . . 4 (ℝ ↑m (1...𝑁)) ∈ V
52, 3, 4fvmpt 7002 . . 3 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (ℝ ↑m (1...𝑁)))
65eleq2d 2811 . 2 (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁))))
7 reex 11229 . . 3 ℝ ∈ V
8 ovex 7450 . . 3 (1...𝑁) ∈ V
97, 8elmap 8888 . 2 (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)βŸΆβ„)
106, 9bitrdi 286 1 (𝑁 ∈ β„• β†’ (𝐴 ∈ (π”Όβ€˜π‘) ↔ 𝐴:(1...𝑁)βŸΆβ„))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1533   ∈ wcel 2098  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417   ↑m cmap 8843  β„cr 11137  1c1 11139  β„•cn 12242  ...cfz 13516  π”Όcee 28756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-map 8845  df-ee 28759
This theorem is referenced by:  mptelee  28763  eleei  28765  axlowdimlem5  28814  axlowdimlem7  28816  axlowdimlem10  28819  axlowdimlem14  28823  axlowdim1  28827  elntg2  28853
  Copyright terms: Public domain W3C validator