MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elee Structured version   Visualization version   GIF version

Theorem elee 27307
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
elee (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))

Proof of Theorem elee
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7315 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21oveq2d 7323 . . . 4 (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
3 df-ee 27304 . . . 4 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
4 ovex 7340 . . . 4 (ℝ ↑m (1...𝑁)) ∈ V
52, 3, 4fvmpt 6907 . . 3 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁)))
65eleq2d 2822 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁))))
7 reex 11008 . . 3 ℝ ∈ V
8 ovex 7340 . . 3 (1...𝑁) ∈ V
97, 8elmap 8690 . 2 (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ)
106, 9bitrdi 287 1 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  wf 6454  cfv 6458  (class class class)co 7307  m cmap 8646  cr 10916  1c1 10918  cn 12019  ...cfz 13285  𝔼cee 27301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-map 8648  df-ee 27304
This theorem is referenced by:  mptelee  27308  eleei  27310  axlowdimlem5  27359  axlowdimlem7  27361  axlowdimlem10  27364  axlowdimlem14  27368  axlowdim1  27372  elntg2  27398
  Copyright terms: Public domain W3C validator