| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version | ||
| Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| elee | ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7360 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 2 | 1 | oveq2d 7368 | . . . 4 ⊢ (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁))) |
| 3 | df-ee 28870 | . . . 4 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | |
| 4 | ovex 7385 | . . . 4 ⊢ (ℝ ↑m (1...𝑁)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6935 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁))) |
| 6 | 5 | eleq2d 2819 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁)))) |
| 7 | reex 11104 | . . 3 ⊢ ℝ ∈ V | |
| 8 | ovex 7385 | . . 3 ⊢ (1...𝑁) ∈ V | |
| 9 | 7, 8 | elmap 8801 | . 2 ⊢ (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 ℝcr 11012 1c1 11014 ℕcn 12132 ...cfz 13409 𝔼cee 28867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-ee 28870 |
| This theorem is referenced by: mptelee 28874 mpteleeOLD 28875 eleei 28877 axlowdimlem5 28926 axlowdimlem7 28928 axlowdimlem10 28931 axlowdimlem14 28935 axlowdim1 28939 elntg2 28965 |
| Copyright terms: Public domain | W3C validator |