Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version |
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elee | ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7190 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | oveq2d 7198 | . . . 4 ⊢ (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁))) |
3 | df-ee 26849 | . . . 4 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | |
4 | ovex 7215 | . . . 4 ⊢ (ℝ ↑m (1...𝑁)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6787 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁))) |
6 | 5 | eleq2d 2819 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁)))) |
7 | reex 10718 | . . 3 ⊢ ℝ ∈ V | |
8 | ovex 7215 | . . 3 ⊢ (1...𝑁) ∈ V | |
9 | 7, 8 | elmap 8493 | . 2 ⊢ (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ) |
10 | 6, 9 | bitrdi 290 | 1 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 ⟶wf 6345 ‘cfv 6349 (class class class)co 7182 ↑m cmap 8449 ℝcr 10626 1c1 10628 ℕcn 11728 ...cfz 12993 𝔼cee 26846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-map 8451 df-ee 26849 |
This theorem is referenced by: mptelee 26853 eleei 26855 axlowdimlem5 26904 axlowdimlem7 26906 axlowdimlem10 26909 axlowdimlem14 26913 axlowdim1 26917 elntg2 26943 |
Copyright terms: Public domain | W3C validator |