| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version | ||
| Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| elee | ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 2 | 1 | oveq2d 7369 | . . . 4 ⊢ (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁))) |
| 3 | df-ee 28854 | . . . 4 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | |
| 4 | ovex 7386 | . . . 4 ⊢ (ℝ ↑m (1...𝑁)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6934 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁))) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁)))) |
| 7 | reex 11119 | . . 3 ⊢ ℝ ∈ V | |
| 8 | ovex 7386 | . . 3 ⊢ (1...𝑁) ∈ V | |
| 9 | 7, 8 | elmap 8805 | . 2 ⊢ (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ℝcr 11027 1c1 11029 ℕcn 12146 ...cfz 13428 𝔼cee 28851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-ee 28854 |
| This theorem is referenced by: mptelee 28858 eleei 28860 axlowdimlem5 28909 axlowdimlem7 28911 axlowdimlem10 28914 axlowdimlem14 28918 axlowdim1 28922 elntg2 28948 |
| Copyright terms: Public domain | W3C validator |