| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version | ||
| Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| elee | ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 2 | 1 | oveq2d 7362 | . . . 4 ⊢ (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁))) |
| 3 | df-ee 28867 | . . . 4 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | |
| 4 | ovex 7379 | . . . 4 ⊢ (ℝ ↑m (1...𝑁)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6929 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁))) |
| 6 | 5 | eleq2d 2817 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑m (1...𝑁)))) |
| 7 | reex 11094 | . . 3 ⊢ ℝ ∈ V | |
| 8 | ovex 7379 | . . 3 ⊢ (1...𝑁) ∈ V | |
| 9 | 7, 8 | elmap 8795 | . 2 ⊢ (𝐴 ∈ (ℝ ↑m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11002 1c1 11004 ℕcn 12122 ...cfz 13404 𝔼cee 28864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ee 28867 |
| This theorem is referenced by: mptelee 28871 eleei 28873 axlowdimlem5 28922 axlowdimlem7 28924 axlowdimlem10 28927 axlowdimlem14 28931 axlowdim1 28935 elntg2 28961 |
| Copyright terms: Public domain | W3C validator |