Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Visualization version   GIF version

Theorem brcgr 26798
 Description: The binary relation form of the congruence predicate. The statement ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖

Proof of Theorem brcgr
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5327 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5327 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2839 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
43anbi1d 632 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
5 fveq2 6662 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
65fveq1d 6664 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)‘𝑖) = ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖))
7 fveq2 6662 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
87fveq1d 6664 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((2nd𝑥)‘𝑖) = ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))
96, 8oveq12d 7173 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖)) = (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)))
109oveq1d 7170 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1110sumeq2sdv 15114 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1211eqeq1d 2760 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)))
134, 12anbi12d 633 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
1413rexbidv 3221 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
15 eleq1 2839 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
1615anbi2d 631 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
17 fveq2 6662 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
1817fveq1d 6664 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((1st𝑦)‘𝑖) = ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖))
19 fveq2 6662 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
2019fveq1d 6664 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((2nd𝑦)‘𝑖) = ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))
2118, 20oveq12d 7173 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖)) = (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)))
2221oveq1d 7170 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2322sumeq2sdv 15114 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2423eqeq2d 2769 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
2516, 24anbi12d 633 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
2625rexbidv 3221 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
27 df-cgr 26791 . . 3 Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
281, 2, 14, 26, 27brab 5403 . 2 (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
29 opelxp2 5569 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → 𝐷 ∈ (𝔼‘𝑛))
3029ad2antll 728 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛))
31 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁))
32 eedimeq 26796 . . . . . . . . . 10 ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3330, 31, 32syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
3433adantlr 714 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
35 oveq2 7163 . . . . . . . . . 10 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3635sumeq1d 15111 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
3735sumeq1d 15111 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
3836, 37eqeq12d 2774 . . . . . . . 8 (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
3934, 38syl 17 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
40 op1stg 7710 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4140fveq1d 6664 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐴𝑖))
42 op2ndg 7711 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4342fveq1d 6664 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐵𝑖))
4441, 43oveq12d 7173 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4544oveq1d 7170 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4645sumeq2sdv 15114 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
47 op1stg 7710 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
4847fveq1d 6664 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐶𝑖))
49 op2ndg 7711 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
5049fveq1d 6664 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐷𝑖))
5148, 50oveq12d 7173 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5251oveq1d 7170 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5352sumeq2sdv 15114 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
5446, 53eqeqan12d 2775 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5554ad2antrr 725 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5639, 55bitrd 282 . . . . . 6 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5756biimpd 232 . . . . 5 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5857expimpd 457 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5958rexlimdva 3208 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
60 eleenn 26794 . . . . 5 (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
6160ad2antll 728 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
62 opelxpi 5564 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
63 opelxpi 5564 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6462, 63anim12i 615 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6564adantr 484 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6654biimpar 481 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
6765, 66jca 515 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
68 fveq2 6662 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
6968sqxpeqd 5559 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
7069eleq2d 2837 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7169eleq2d 2837 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7270, 71anbi12d 633 . . . . . . . 8 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))))
7372, 38anbi12d 633 . . . . . . 7 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7473rspcev 3543 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7567, 74sylan2 595 . . . . 5 ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7675exp32 424 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))))
7761, 76mpcom 38 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7859, 77impbid 215 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7928, 78syl5bb 286 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3071  ⟨cop 4531   class class class wbr 5035   × cxp 5525  ‘cfv 6339  (class class class)co 7155  1st c1st 7696  2nd c2nd 7697  1c1 10581   − cmin 10913  ℕcn 11679  2c2 11734  ...cfz 12944  ↑cexp 13484  Σcsu 15095  𝔼cee 26786  Cgrccgr 26788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-seq 13424  df-sum 15096  df-ee 26789  df-cgr 26791 This theorem is referenced by:  axcgrrflx  26812  axcgrtr  26813  axcgrid  26814  axsegcon  26825  ax5seglem3  26829  ax5seglem6  26832  ax5seg  26836  axlowdimlem17  26856  ecgrtg  26881
 Copyright terms: Public domain W3C validator