MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Visualization version   GIF version

Theorem brcgr 28933
Description: The binary relation form of the congruence predicate. The statement 𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖

Proof of Theorem brcgr
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5484 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5484 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2832 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
43anbi1d 630 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
5 fveq2 6920 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
65fveq1d 6922 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)‘𝑖) = ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖))
7 fveq2 6920 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
87fveq1d 6922 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((2nd𝑥)‘𝑖) = ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))
96, 8oveq12d 7466 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖)) = (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)))
109oveq1d 7463 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1110sumeq2sdv 15751 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1211eqeq1d 2742 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)))
134, 12anbi12d 631 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
1413rexbidv 3185 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
15 eleq1 2832 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
1615anbi2d 629 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
17 fveq2 6920 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
1817fveq1d 6922 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((1st𝑦)‘𝑖) = ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖))
19 fveq2 6920 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
2019fveq1d 6922 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((2nd𝑦)‘𝑖) = ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))
2118, 20oveq12d 7466 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖)) = (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)))
2221oveq1d 7463 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2322sumeq2sdv 15751 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2423eqeq2d 2751 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
2516, 24anbi12d 631 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
2625rexbidv 3185 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
27 df-cgr 28926 . . 3 Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
281, 2, 14, 26, 27brab 5562 . 2 (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
29 opelxp2 5743 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → 𝐷 ∈ (𝔼‘𝑛))
3029ad2antll 728 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛))
31 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁))
32 eedimeq 28931 . . . . . . . . . 10 ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3330, 31, 32syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
3433adantlr 714 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
35 oveq2 7456 . . . . . . . . . 10 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3635sumeq1d 15748 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
3735sumeq1d 15748 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
3836, 37eqeq12d 2756 . . . . . . . 8 (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
3934, 38syl 17 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
40 op1stg 8042 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4140fveq1d 6922 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐴𝑖))
42 op2ndg 8043 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4342fveq1d 6922 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐵𝑖))
4441, 43oveq12d 7466 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4544oveq1d 7463 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4645sumeq2sdv 15751 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
47 op1stg 8042 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
4847fveq1d 6922 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐶𝑖))
49 op2ndg 8043 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
5049fveq1d 6922 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐷𝑖))
5148, 50oveq12d 7466 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5251oveq1d 7463 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5352sumeq2sdv 15751 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
5446, 53eqeqan12d 2754 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5554ad2antrr 725 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5639, 55bitrd 279 . . . . . 6 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5756biimpd 229 . . . . 5 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5857expimpd 453 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5958rexlimdva 3161 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
60 eleenn 28929 . . . . 5 (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
6160ad2antll 728 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
62 opelxpi 5737 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
63 opelxpi 5737 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6462, 63anim12i 612 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6564adantr 480 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6654biimpar 477 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
6765, 66jca 511 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
68 fveq2 6920 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
6968sqxpeqd 5732 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
7069eleq2d 2830 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7169eleq2d 2830 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7270, 71anbi12d 631 . . . . . . . 8 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))))
7372, 38anbi12d 631 . . . . . . 7 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7473rspcev 3635 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7567, 74sylan2 592 . . . . 5 ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7675exp32 420 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))))
7761, 76mpcom 38 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7859, 77impbid 212 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7928, 78bitrid 283 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  1c1 11185  cmin 11520  cn 12293  2c2 12348  ...cfz 13567  cexp 14112  Σcsu 15734  𝔼cee 28921  Cgrccgr 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-sum 15735  df-ee 28924  df-cgr 28926
This theorem is referenced by:  axcgrrflx  28947  axcgrtr  28948  axcgrid  28949  axsegcon  28960  ax5seglem3  28964  ax5seglem6  28967  ax5seg  28971  axlowdimlem17  28991  ecgrtg  29016
  Copyright terms: Public domain W3C validator