Step | Hyp | Ref
| Expression |
1 | | opex 5327 |
. . 3
⊢
〈𝐴, 𝐵〉 ∈ V |
2 | | opex 5327 |
. . 3
⊢
〈𝐶, 𝐷〉 ∈ V |
3 | | eleq1 2839 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) |
4 | 3 | anbi1d 632 |
. . . . 5
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))) |
5 | | fveq2 6662 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
6 | 5 | fveq1d 6664 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((1st ‘𝑥)‘𝑖) = ((1st ‘〈𝐴, 𝐵〉)‘𝑖)) |
7 | | fveq2 6662 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
8 | 7 | fveq1d 6664 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((2nd ‘𝑥)‘𝑖) = ((2nd ‘〈𝐴, 𝐵〉)‘𝑖)) |
9 | 6, 8 | oveq12d 7173 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖)) = (((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))) |
10 | 9 | oveq1d 7170 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) = ((((1st
‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2)) |
11 | 10 | sumeq2sdv 15114 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2)) |
12 | 11 | eqeq1d 2760 |
. . . . 5
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))) |
13 | 4, 12 | anbi12d 633 |
. . . 4
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)))) |
14 | 13 | rexbidv 3221 |
. . 3
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)))) |
15 | | eleq1 2839 |
. . . . . 6
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) |
16 | 15 | anbi2d 631 |
. . . . 5
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))) |
17 | | fveq2 6662 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (1st ‘𝑦) = (1st
‘〈𝐶, 𝐷〉)) |
18 | 17 | fveq1d 6664 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((1st ‘𝑦)‘𝑖) = ((1st ‘〈𝐶, 𝐷〉)‘𝑖)) |
19 | | fveq2 6662 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (2nd ‘𝑦) = (2nd
‘〈𝐶, 𝐷〉)) |
20 | 19 | fveq1d 6664 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((2nd ‘𝑦)‘𝑖) = ((2nd ‘〈𝐶, 𝐷〉)‘𝑖)) |
21 | 18, 20 | oveq12d 7173 |
. . . . . . . 8
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖)) = (((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))) |
22 | 21 | oveq1d 7170 |
. . . . . . 7
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((((1st
‘𝑦)‘𝑖) − ((2nd
‘𝑦)‘𝑖))↑2) = ((((1st
‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
23 | 22 | sumeq2sdv 15114 |
. . . . . 6
⊢ (𝑦 = 〈𝐶, 𝐷〉 → Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
24 | 23 | eqeq2d 2769 |
. . . . 5
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
25 | 16, 24 | anbi12d 633 |
. . . 4
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
26 | 25 | rexbidv 3221 |
. . 3
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
27 | | df-cgr 26791 |
. . 3
⊢ Cgr =
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |
28 | 1, 2, 14, 26, 27 | brab 5403 |
. 2
⊢
(〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
29 | | opelxp2 5569 |
. . . . . . . . . . 11
⊢
(〈𝐶, 𝐷〉 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) →
𝐷 ∈
(𝔼‘𝑛)) |
30 | 29 | ad2antll 728 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛)) |
31 | | simplrr 777 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁)) |
32 | | eedimeq 26796 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁) |
33 | 30, 31, 32 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁) |
34 | 33 | adantlr 714 |
. . . . . . . 8
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁) |
35 | | oveq2 7163 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) |
36 | 35 | sumeq1d 15111 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2)) |
37 | 35 | sumeq1d 15111 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
38 | 36, 37 | eqeq12d 2774 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
39 | 34, 38 | syl 17 |
. . . . . . 7
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
40 | | op1stg 7710 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
41 | 40 | fveq1d 6664 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st
‘〈𝐴, 𝐵〉)‘𝑖) = (𝐴‘𝑖)) |
42 | | op2ndg 7711 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
43 | 42 | fveq1d 6664 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd
‘〈𝐴, 𝐵〉)‘𝑖) = (𝐵‘𝑖)) |
44 | 41, 43 | oveq12d 7173 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st
‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖)) = ((𝐴‘𝑖) − (𝐵‘𝑖))) |
45 | 44 | oveq1d 7170 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st
‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
46 | 45 | sumeq2sdv 15114 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
47 | | op1stg 7710 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
48 | 47 | fveq1d 6664 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st
‘〈𝐶, 𝐷〉)‘𝑖) = (𝐶‘𝑖)) |
49 | | op2ndg 7711 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
50 | 49 | fveq1d 6664 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd
‘〈𝐶, 𝐷〉)‘𝑖) = (𝐷‘𝑖)) |
51 | 48, 50 | oveq12d 7173 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st
‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖)) = ((𝐶‘𝑖) − (𝐷‘𝑖))) |
52 | 51 | oveq1d 7170 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st
‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) = (((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
53 | 52 | sumeq2sdv 15114 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
54 | 46, 53 | eqeqan12d 2775 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
55 | 54 | ad2antrr 725 |
. . . . . . 7
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
56 | 39, 55 | bitrd 282 |
. . . . . 6
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
57 | 56 | biimpd 232 |
. . . . 5
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
58 | 57 | expimpd 457 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
59 | 58 | rexlimdva 3208 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
60 | | eleenn 26794 |
. . . . 5
⊢ (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
61 | 60 | ad2antll 728 |
. . . 4
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
62 | | opelxpi 5564 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) |
63 | | opelxpi 5564 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) |
64 | 62, 63 | anim12i 615 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
65 | 64 | adantr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) → (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
66 | 54 | biimpar 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
67 | 65, 66 | jca 515 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) → ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
68 | | fveq2 6662 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) |
69 | 68 | sqxpeqd 5559 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁))) |
70 | 69 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
71 | 69 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
72 | 70, 71 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))) |
73 | 72, 38 | anbi12d 633 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) ↔ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
74 | 73 | rspcev 3543 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧
((〈𝐴, 𝐵〉 ∈
((𝔼‘𝑁) ×
(𝔼‘𝑁)) ∧
〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
75 | 67, 74 | sylan2 595 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
76 | 75 | exp32 424 |
. . . 4
⊢ (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))))) |
77 | 61, 76 | mpcom 38 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
78 | 59, 77 | impbid 215 |
. 2
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
79 | 28, 78 | syl5bb 286 |
1
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |