| Step | Hyp | Ref
| Expression |
| 1 | | opex 5469 |
. . 3
⊢
〈𝐴, 𝐵〉 ∈ V |
| 2 | | opex 5469 |
. . 3
⊢
〈𝐶, 𝐷〉 ∈ V |
| 3 | | eleq1 2829 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) |
| 4 | 3 | anbi1d 631 |
. . . . 5
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))) |
| 5 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
| 6 | 5 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((1st ‘𝑥)‘𝑖) = ((1st ‘〈𝐴, 𝐵〉)‘𝑖)) |
| 7 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
| 8 | 7 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((2nd ‘𝑥)‘𝑖) = ((2nd ‘〈𝐴, 𝐵〉)‘𝑖)) |
| 9 | 6, 8 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖)) = (((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))) |
| 10 | 9 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((((1st
‘𝑥)‘𝑖) − ((2nd
‘𝑥)‘𝑖))↑2) = ((((1st
‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2)) |
| 11 | 10 | sumeq2sdv 15739 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2)) |
| 12 | 11 | eqeq1d 2739 |
. . . . 5
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))) |
| 13 | 4, 12 | anbi12d 632 |
. . . 4
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)))) |
| 14 | 13 | rexbidv 3179 |
. . 3
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)))) |
| 15 | | eleq1 2829 |
. . . . . 6
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) |
| 16 | 15 | anbi2d 630 |
. . . . 5
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))) |
| 17 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (1st ‘𝑦) = (1st
‘〈𝐶, 𝐷〉)) |
| 18 | 17 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((1st ‘𝑦)‘𝑖) = ((1st ‘〈𝐶, 𝐷〉)‘𝑖)) |
| 19 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (2nd ‘𝑦) = (2nd
‘〈𝐶, 𝐷〉)) |
| 20 | 19 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((2nd ‘𝑦)‘𝑖) = ((2nd ‘〈𝐶, 𝐷〉)‘𝑖)) |
| 21 | 18, 20 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖)) = (((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))) |
| 22 | 21 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((((1st
‘𝑦)‘𝑖) − ((2nd
‘𝑦)‘𝑖))↑2) = ((((1st
‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
| 23 | 22 | sumeq2sdv 15739 |
. . . . . 6
⊢ (𝑦 = 〈𝐶, 𝐷〉 → Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
| 24 | 23 | eqeq2d 2748 |
. . . . 5
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 25 | 16, 24 | anbi12d 632 |
. . . 4
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
| 26 | 25 | rexbidv 3179 |
. . 3
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
| 27 | | df-cgr 28908 |
. . 3
⊢ Cgr =
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |
| 28 | 1, 2, 14, 26, 27 | brab 5548 |
. 2
⊢
(〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 29 | | opelxp2 5728 |
. . . . . . . . . . 11
⊢
(〈𝐶, 𝐷〉 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) →
𝐷 ∈
(𝔼‘𝑛)) |
| 30 | 29 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛)) |
| 31 | | simplrr 778 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁)) |
| 32 | | eedimeq 28913 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁) |
| 34 | 33 | adantlr 715 |
. . . . . . . 8
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁) |
| 35 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) |
| 36 | 35 | sumeq1d 15736 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2)) |
| 37 | 35 | sumeq1d 15736 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
| 38 | 36, 37 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 39 | 34, 38 | syl 17 |
. . . . . . 7
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 40 | | op1stg 8026 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 41 | 40 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st
‘〈𝐴, 𝐵〉)‘𝑖) = (𝐴‘𝑖)) |
| 42 | | op2ndg 8027 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 43 | 42 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd
‘〈𝐴, 𝐵〉)‘𝑖) = (𝐵‘𝑖)) |
| 44 | 41, 43 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st
‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖)) = ((𝐴‘𝑖) − (𝐵‘𝑖))) |
| 45 | 44 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st
‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
| 46 | 45 | sumeq2sdv 15739 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
| 47 | | op1stg 8026 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
| 48 | 47 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st
‘〈𝐶, 𝐷〉)‘𝑖) = (𝐶‘𝑖)) |
| 49 | | op2ndg 8027 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
| 50 | 49 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd
‘〈𝐶, 𝐷〉)‘𝑖) = (𝐷‘𝑖)) |
| 51 | 48, 50 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st
‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖)) = ((𝐶‘𝑖) − (𝐷‘𝑖))) |
| 52 | 51 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st
‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) = (((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
| 53 | 52 | sumeq2sdv 15739 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
| 54 | 46, 53 | eqeqan12d 2751 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 55 | 54 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 56 | 39, 55 | bitrd 279 |
. . . . . 6
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 57 | 56 | biimpd 229 |
. . . . 5
⊢
(((((𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑛 ∈ ℕ) ∧
(〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 58 | 57 | expimpd 453 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 59 | 58 | rexlimdva 3155 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 60 | | eleenn 28911 |
. . . . 5
⊢ (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
| 61 | 60 | ad2antll 729 |
. . . 4
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
| 62 | | opelxpi 5722 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) |
| 63 | | opelxpi 5722 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) |
| 64 | 62, 63 | anim12i 613 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
| 65 | 64 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) → (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
| 66 | 54 | biimpar 477 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) |
| 67 | 65, 66 | jca 511 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) → ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 68 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) |
| 69 | 68 | sqxpeqd 5717 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁))) |
| 70 | 69 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
| 71 | 69 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))) |
| 72 | 70, 71 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))) |
| 73 | 72, 38 | anbi12d 632 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) ↔ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
| 74 | 73 | rspcev 3622 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧
((〈𝐴, 𝐵〉 ∈
((𝔼‘𝑁) ×
(𝔼‘𝑁)) ∧
〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 75 | 67, 74 | sylan2 593 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))) |
| 76 | 75 | exp32 420 |
. . . 4
⊢ (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2))))) |
| 77 | 61, 76 | mpcom 38 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) → ∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)))) |
| 78 | 59, 77 | impbid 212 |
. 2
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((〈𝐴, 𝐵〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 〈𝐶, 𝐷〉 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐴, 𝐵〉)‘𝑖) − ((2nd ‘〈𝐴, 𝐵〉)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘〈𝐶, 𝐷〉)‘𝑖) − ((2nd ‘〈𝐶, 𝐷〉)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 79 | 28, 78 | bitrid 283 |
1
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |