MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Visualization version   GIF version

Theorem brcgr 28834
Description: The binary relation form of the congruence predicate. The statement 𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖

Proof of Theorem brcgr
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5427 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5427 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2817 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
43anbi1d 631 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
5 fveq2 6861 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
65fveq1d 6863 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)‘𝑖) = ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖))
7 fveq2 6861 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
87fveq1d 6863 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((2nd𝑥)‘𝑖) = ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))
96, 8oveq12d 7408 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖)) = (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)))
109oveq1d 7405 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1110sumeq2sdv 15676 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1211eqeq1d 2732 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)))
134, 12anbi12d 632 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
1413rexbidv 3158 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
15 eleq1 2817 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
1615anbi2d 630 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
17 fveq2 6861 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
1817fveq1d 6863 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((1st𝑦)‘𝑖) = ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖))
19 fveq2 6861 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
2019fveq1d 6863 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((2nd𝑦)‘𝑖) = ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))
2118, 20oveq12d 7408 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖)) = (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)))
2221oveq1d 7405 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2322sumeq2sdv 15676 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2423eqeq2d 2741 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
2516, 24anbi12d 632 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
2625rexbidv 3158 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
27 df-cgr 28827 . . 3 Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
281, 2, 14, 26, 27brab 5506 . 2 (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
29 opelxp2 5684 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → 𝐷 ∈ (𝔼‘𝑛))
3029ad2antll 729 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛))
31 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁))
32 eedimeq 28832 . . . . . . . . . 10 ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3330, 31, 32syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
3433adantlr 715 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
35 oveq2 7398 . . . . . . . . . 10 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3635sumeq1d 15673 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
3735sumeq1d 15673 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
3836, 37eqeq12d 2746 . . . . . . . 8 (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
3934, 38syl 17 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
40 op1stg 7983 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4140fveq1d 6863 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐴𝑖))
42 op2ndg 7984 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4342fveq1d 6863 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐵𝑖))
4441, 43oveq12d 7408 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4544oveq1d 7405 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4645sumeq2sdv 15676 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
47 op1stg 7983 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
4847fveq1d 6863 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐶𝑖))
49 op2ndg 7984 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
5049fveq1d 6863 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐷𝑖))
5148, 50oveq12d 7408 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5251oveq1d 7405 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5352sumeq2sdv 15676 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
5446, 53eqeqan12d 2744 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5554ad2antrr 726 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5639, 55bitrd 279 . . . . . 6 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5756biimpd 229 . . . . 5 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5857expimpd 453 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5958rexlimdva 3135 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
60 eleenn 28830 . . . . 5 (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
6160ad2antll 729 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
62 opelxpi 5678 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
63 opelxpi 5678 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6462, 63anim12i 613 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6564adantr 480 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6654biimpar 477 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
6765, 66jca 511 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
68 fveq2 6861 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
6968sqxpeqd 5673 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
7069eleq2d 2815 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7169eleq2d 2815 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7270, 71anbi12d 632 . . . . . . . 8 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))))
7372, 38anbi12d 632 . . . . . . 7 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7473rspcev 3591 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7567, 74sylan2 593 . . . . 5 ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7675exp32 420 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))))
7761, 76mpcom 38 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7859, 77impbid 212 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7928, 78bitrid 283 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  1c1 11076  cmin 11412  cn 12193  2c2 12248  ...cfz 13475  cexp 14033  Σcsu 15659  𝔼cee 28822  Cgrccgr 28824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-sum 15660  df-ee 28825  df-cgr 28827
This theorem is referenced by:  axcgrrflx  28848  axcgrtr  28849  axcgrid  28850  axsegcon  28861  ax5seglem3  28865  ax5seglem6  28868  ax5seg  28872  axlowdimlem17  28892  ecgrtg  28917
  Copyright terms: Public domain W3C validator