MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Visualization version   GIF version

Theorem brcgr 26798
Description: The binary relation form of the congruence predicate. The statement 𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖

Proof of Theorem brcgr
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5327 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5327 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2839 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
43anbi1d 632 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
5 fveq2 6662 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
65fveq1d 6664 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)‘𝑖) = ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖))
7 fveq2 6662 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
87fveq1d 6664 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((2nd𝑥)‘𝑖) = ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))
96, 8oveq12d 7173 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖)) = (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)))
109oveq1d 7170 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1110sumeq2sdv 15114 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1211eqeq1d 2760 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)))
134, 12anbi12d 633 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
1413rexbidv 3221 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
15 eleq1 2839 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
1615anbi2d 631 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
17 fveq2 6662 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
1817fveq1d 6664 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((1st𝑦)‘𝑖) = ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖))
19 fveq2 6662 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
2019fveq1d 6664 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((2nd𝑦)‘𝑖) = ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))
2118, 20oveq12d 7173 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖)) = (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)))
2221oveq1d 7170 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2322sumeq2sdv 15114 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2423eqeq2d 2769 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
2516, 24anbi12d 633 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
2625rexbidv 3221 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
27 df-cgr 26791 . . 3 Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
281, 2, 14, 26, 27brab 5403 . 2 (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
29 opelxp2 5569 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → 𝐷 ∈ (𝔼‘𝑛))
3029ad2antll 728 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛))
31 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁))
32 eedimeq 26796 . . . . . . . . . 10 ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3330, 31, 32syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
3433adantlr 714 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
35 oveq2 7163 . . . . . . . . . 10 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3635sumeq1d 15111 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
3735sumeq1d 15111 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
3836, 37eqeq12d 2774 . . . . . . . 8 (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
3934, 38syl 17 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
40 op1stg 7710 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4140fveq1d 6664 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐴𝑖))
42 op2ndg 7711 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4342fveq1d 6664 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐵𝑖))
4441, 43oveq12d 7173 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4544oveq1d 7170 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4645sumeq2sdv 15114 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
47 op1stg 7710 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
4847fveq1d 6664 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐶𝑖))
49 op2ndg 7711 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
5049fveq1d 6664 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐷𝑖))
5148, 50oveq12d 7173 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5251oveq1d 7170 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5352sumeq2sdv 15114 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
5446, 53eqeqan12d 2775 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5554ad2antrr 725 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5639, 55bitrd 282 . . . . . 6 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5756biimpd 232 . . . . 5 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5857expimpd 457 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5958rexlimdva 3208 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
60 eleenn 26794 . . . . 5 (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
6160ad2antll 728 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
62 opelxpi 5564 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
63 opelxpi 5564 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6462, 63anim12i 615 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6564adantr 484 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6654biimpar 481 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
6765, 66jca 515 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
68 fveq2 6662 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
6968sqxpeqd 5559 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
7069eleq2d 2837 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7169eleq2d 2837 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7270, 71anbi12d 633 . . . . . . . 8 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))))
7372, 38anbi12d 633 . . . . . . 7 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7473rspcev 3543 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7567, 74sylan2 595 . . . . 5 ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7675exp32 424 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))))
7761, 76mpcom 38 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7859, 77impbid 215 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7928, 78syl5bb 286 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071  cop 4531   class class class wbr 5035   × cxp 5525  cfv 6339  (class class class)co 7155  1st c1st 7696  2nd c2nd 7697  1c1 10581  cmin 10913  cn 11679  2c2 11734  ...cfz 12944  cexp 13484  Σcsu 15095  𝔼cee 26786  Cgrccgr 26788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-seq 13424  df-sum 15096  df-ee 26789  df-cgr 26791
This theorem is referenced by:  axcgrrflx  26812  axcgrtr  26813  axcgrid  26814  axsegcon  26825  ax5seglem3  26829  ax5seglem6  26832  ax5seg  26836  axlowdimlem17  26856  ecgrtg  26881
  Copyright terms: Public domain W3C validator