Detailed syntax breakdown of Definition df-btwn
Step | Hyp | Ref
| Expression |
1 | | cbtwn 27160 |
. 2
class
Btwn |
2 | | vx |
. . . . . . . . 9
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑥 |
4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
6 | | cee 27159 |
. . . . . . . . 9
class
𝔼 |
7 | 5, 6 | cfv 6418 |
. . . . . . . 8
class
(𝔼‘𝑛) |
8 | 3, 7 | wcel 2108 |
. . . . . . 7
wff 𝑥 ∈ (𝔼‘𝑛) |
9 | | vz |
. . . . . . . . 9
setvar 𝑧 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑧 |
11 | 10, 7 | wcel 2108 |
. . . . . . 7
wff 𝑧 ∈ (𝔼‘𝑛) |
12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . . 8
class 𝑦 |
14 | 13, 7 | wcel 2108 |
. . . . . . 7
wff 𝑦 ∈ (𝔼‘𝑛) |
15 | 8, 11, 14 | w3a 1085 |
. . . . . 6
wff (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) |
16 | | vi |
. . . . . . . . . . 11
setvar 𝑖 |
17 | 16 | cv 1538 |
. . . . . . . . . 10
class 𝑖 |
18 | 17, 13 | cfv 6418 |
. . . . . . . . 9
class (𝑦‘𝑖) |
19 | | c1 10803 |
. . . . . . . . . . . 12
class
1 |
20 | | vt |
. . . . . . . . . . . . 13
setvar 𝑡 |
21 | 20 | cv 1538 |
. . . . . . . . . . . 12
class 𝑡 |
22 | | cmin 11135 |
. . . . . . . . . . . 12
class
− |
23 | 19, 21, 22 | co 7255 |
. . . . . . . . . . 11
class (1
− 𝑡) |
24 | 17, 3 | cfv 6418 |
. . . . . . . . . . 11
class (𝑥‘𝑖) |
25 | | cmul 10807 |
. . . . . . . . . . 11
class
· |
26 | 23, 24, 25 | co 7255 |
. . . . . . . . . 10
class ((1
− 𝑡) · (𝑥‘𝑖)) |
27 | 17, 10 | cfv 6418 |
. . . . . . . . . . 11
class (𝑧‘𝑖) |
28 | 21, 27, 25 | co 7255 |
. . . . . . . . . 10
class (𝑡 · (𝑧‘𝑖)) |
29 | | caddc 10805 |
. . . . . . . . . 10
class
+ |
30 | 26, 28, 29 | co 7255 |
. . . . . . . . 9
class (((1
− 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))) |
31 | 18, 30 | wceq 1539 |
. . . . . . . 8
wff (𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))) |
32 | | cfz 13168 |
. . . . . . . . 9
class
... |
33 | 19, 5, 32 | co 7255 |
. . . . . . . 8
class
(1...𝑛) |
34 | 31, 16, 33 | wral 3063 |
. . . . . . 7
wff
∀𝑖 ∈
(1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))) |
35 | | cc0 10802 |
. . . . . . . 8
class
0 |
36 | | cicc 13011 |
. . . . . . . 8
class
[,] |
37 | 35, 19, 36 | co 7255 |
. . . . . . 7
class
(0[,]1) |
38 | 34, 20, 37 | wrex 3064 |
. . . . . 6
wff
∃𝑡 ∈
(0[,]1)∀𝑖 ∈
(1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))) |
39 | 15, 38 | wa 395 |
. . . . 5
wff ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) |
40 | | cn 11903 |
. . . . 5
class
ℕ |
41 | 39, 4, 40 | wrex 3064 |
. . . 4
wff
∃𝑛 ∈
ℕ ((𝑥 ∈
(𝔼‘𝑛) ∧
𝑧 ∈
(𝔼‘𝑛) ∧
𝑦 ∈
(𝔼‘𝑛)) ∧
∃𝑡 ∈
(0[,]1)∀𝑖 ∈
(1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖)))) |
42 | 41, 2, 9, 12 | coprab 7256 |
. . 3
class
{〈〈𝑥,
𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} |
43 | 42 | ccnv 5579 |
. 2
class ◡{〈〈𝑥, 𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} |
44 | 1, 43 | wceq 1539 |
1
wff Btwn =
◡{〈〈𝑥, 𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} |