Detailed syntax breakdown of Definition df-cj
| Step | Hyp | Ref
| Expression |
| 1 | | ccj 15135 |
. 2
class
∗ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cc 11153 |
. . 3
class
ℂ |
| 4 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 5 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 7 | | caddc 11158 |
. . . . . . 7
class
+ |
| 8 | 4, 6, 7 | co 7431 |
. . . . . 6
class (𝑥 + 𝑦) |
| 9 | | cr 11154 |
. . . . . 6
class
ℝ |
| 10 | 8, 9 | wcel 2108 |
. . . . 5
wff (𝑥 + 𝑦) ∈ ℝ |
| 11 | | ci 11157 |
. . . . . . 7
class
i |
| 12 | | cmin 11492 |
. . . . . . . 8
class
− |
| 13 | 4, 6, 12 | co 7431 |
. . . . . . 7
class (𝑥 − 𝑦) |
| 14 | | cmul 11160 |
. . . . . . 7
class
· |
| 15 | 11, 13, 14 | co 7431 |
. . . . . 6
class (i
· (𝑥 − 𝑦)) |
| 16 | 15, 9 | wcel 2108 |
. . . . 5
wff (i ·
(𝑥 − 𝑦)) ∈
ℝ |
| 17 | 10, 16 | wa 395 |
. . . 4
wff ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ) |
| 18 | 17, 5, 3 | crio 7387 |
. . 3
class
(℩𝑦
∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈
ℝ)) |
| 19 | 2, 3, 18 | cmpt 5225 |
. 2
class (𝑥 ∈ ℂ ↦
(℩𝑦 ∈
ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈
ℝ))) |
| 20 | 1, 19 | wceq 1540 |
1
wff ∗ =
(𝑥 ∈ ℂ ↦
(℩𝑦 ∈
ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈
ℝ))) |