| Metamath
Proof Explorer Theorem List (p. 151 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | clsslem 15001* | The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.) |
| ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) | ||
| Syntax | ctcl 15002 | Extend class notation to include the transitive closure symbol. |
| class t+ | ||
| Syntax | crtcl 15003 | Extend class notation with reflexive-transitive closure. |
| class t* | ||
| Definition | df-trcl 15004* | Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011.) |
| ⊢ t+ = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) | ||
| Definition | df-rtrcl 15005* | Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011.) |
| ⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) | ||
| Theorem | trcleq1 15006* | Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.) |
| ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | ||
| Theorem | trclsslem 15007* | The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.) |
| ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | ||
| Theorem | trcleq2lem 15008 | Equality implies bijection. (Contributed by RP, 5-May-2020.) |
| ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
| Theorem | cvbtrcl 15009* | Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020.) |
| ⊢ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑅 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)} | ||
| Theorem | trcleq12lem 15010 | Equality implies bijection. (Contributed by RP, 9-May-2020.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
| Theorem | trclexlem 15011 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | ||
| Theorem | trclublem 15012* | If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | ||
| Theorem | trclubi 15013* | The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.) |
| ⊢ Rel 𝑅 & ⊢ 𝑅 ∈ V ⇒ ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅) | ||
| Theorem | trclubgi 15014* | The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝑅 ∈ V ⇒ ⊢ ∩ {𝑠 ∣ (𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) | ||
| Theorem | trclub 15015* | The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
| Theorem | trclubg 15016* | The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
| Theorem | trclfv 15017* | The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | ||
| Theorem | brintclab 15018* | Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.) |
| ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) | ||
| Theorem | brtrclfv 15019* | Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | ||
| Theorem | brcnvtrclfv 15020* | Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴◡(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴))) | ||
| Theorem | brtrclfvcnv 15021* | Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | ||
| Theorem | brcnvtrclfvcnv 15022* | Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴◡(t+‘◡𝑅)𝐵 ↔ ∀𝑟((◡𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴))) | ||
| Theorem | trclfvss 15023 | The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑅 ⊆ 𝑆) → (t+‘𝑅) ⊆ (t+‘𝑆)) | ||
| Theorem | trclfvub 15024 | The transitive closure of a relation has an upper bound. (Contributed by RP, 28-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
| Theorem | trclfvlb 15025 | The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | ||
| Theorem | trclfvcotr 15026 | The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) | ||
| Theorem | trclfvlb2 15027 | The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∘ 𝑅) ⊆ (t+‘𝑅)) | ||
| Theorem | trclfvlb3 15028 | The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ (t+‘𝑅)) | ||
| Theorem | cotrtrclfv 15029 | The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) | ||
| Theorem | trclidm 15030 | The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘(t+‘𝑅)) = (t+‘𝑅)) | ||
| Theorem | trclun 15031 | Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘(𝑅 ∪ 𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆)))) | ||
| Theorem | trclfvg 15032 | The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020.) |
| ⊢ (𝑅 ⊆ (t+‘𝑅) ∨ (t+‘𝑅) = ∅) | ||
| Theorem | trclfvcotrg 15033 | The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.) |
| ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | ||
| Theorem | reltrclfv 15034 | The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) | ||
| Theorem | dmtrclfv 15035 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → dom (t+‘𝑅) = dom 𝑅) | ||
| Syntax | crelexp 15036 | Extend class notation to include relation exponentiation. |
| class ↑𝑟 | ||
| Definition | df-relexp 15037* | Definition of repeated composition of a relation with itself, aka relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 22-May-2020.) |
| ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | ||
| Theorem | reldmrelexp 15038 | The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024.) |
| ⊢ Rel dom ↑𝑟 | ||
| Theorem | relexp0g 15039 | A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | ||
| Theorem | relexp0 15040 | A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | relexp0d 15041 | A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | relexpsucnnr 15042 | A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexp1g 15043 | A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | ||
| Theorem | dfid5 15044 | Identity relation is equal to relational exponentiation to the first power. (Contributed by RP, 9-Jun-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ (𝑥↑𝑟1)) | ||
| Theorem | dfid6 15045* | Identity relation expressed as indexed union of relational powers. (Contributed by RP, 9-Jun-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ {1} (𝑥↑𝑟𝑛)) | ||
| Theorem | relexp1d 15046 | A relation composed once is itself. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) | ||
| Theorem | relexpsucnnl 15047 | A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpsucl 15048 | A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpsucr 15049 | A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexpsucrd 15050 | A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexpsucld 15051 | A reduction for relation exponentiation to the left. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpcnv 15052 | Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) | ||
| Theorem | relexpcnvd 15053 | Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) | ||
| Theorem | relexp0rel 15054 | The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) | ||
| Theorem | relexprelg 15055 | The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexprel 15056 | The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpreld 15057 | The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpnndm 15058 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) | ||
| Theorem | relexpdmg 15059 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relexpdm 15060 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpdmd 15061 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpnnrn 15062 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) | ||
| Theorem | relexprng 15063 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relexprn 15064 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexprnd 15065 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ran (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpfld 15066 | The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpfldd 15067 | The field of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpaddnn 15068 | Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Theorem | relexpuzrel 15069 | The exponentiation of a class to an integer not smaller than 2 is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpaddg 15070 | Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Theorem | relexpaddd 15071 | Relation composition becomes addition under exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Syntax | crtrcl 15072 | Extend class notation with recursively defined reflexive, transitive closure. |
| class t*rec | ||
| Definition | df-rtrclrec 15073* | The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015.) |
| ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
| Theorem | rtrclreclem1 15074 | The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) | ||
| Theorem | dfrtrclrec2 15075* | If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
| Theorem | rtrclreclem2 15076 | The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) | ||
| Theorem | rtrclreclem3 15077 | The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)) | ||
| Theorem | rtrclreclem4 15078* | The reflexive, transitive closure of 𝑅 is the smallest reflexive, transitive relation which contains 𝑅 and the identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) | ||
| Theorem | dfrtrcl2 15079 | The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) | ||
If we have a statement that holds for some element, and a relation between elements that implies if it holds for the first element then it must hold for the second element, the principle of transitive induction shows the statement holds for any element related to the first by the (reflexive-)transitive closure of the relation. | ||
| Theorem | relexpindlem 15080* | Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) | ||
| Theorem | relexpind 15081* | Principle of transitive induction, finite version. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑋 → 𝜏))) | ||
| Theorem | rtrclind 15082* | Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏)) | ||
| Syntax | cshi 15083 | Extend class notation with function shifter. |
| class shift | ||
| Definition | df-shft 15084* | Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ℂ) and produces a new function on ℂ. See shftval 15091 for its value. (Contributed by NM, 20-Jul-2005.) |
| ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) | ||
| Theorem | shftlem 15085* | Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) | ||
| Theorem | shftuz 15086* | A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) | ||
| Theorem | shftfval 15087* | The value of the sequence shifter operation is a function on ℂ. 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | ||
| Theorem | shftdm 15088* | Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) | ||
| Theorem | shftfib 15089 | Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) | ||
| Theorem | shftfn 15090* | Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) | ||
| Theorem | shftval 15091 | Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
| Theorem | shftval2 15092 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) | ||
| Theorem | shftval3 15093 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) | ||
| Theorem | shftval4 15094 | Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) | ||
| Theorem | shftval5 15095 | Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘𝐵)) | ||
| Theorem | shftf 15096* | Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) | ||
| Theorem | 2shfti 15097 | Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) | ||
| Theorem | shftidt2 15098 | Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) | ||
| Theorem | shftidt 15099 | Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹‘𝐴)) | ||
| Theorem | shftcan1 15100 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |