| Metamath
Proof Explorer Theorem List (p. 151 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfid6 15001* | Identity relation expressed as indexed union of relational powers. (Contributed by RP, 9-Jun-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ {1} (𝑥↑𝑟𝑛)) | ||
| Theorem | relexp1d 15002 | A relation composed once is itself. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) | ||
| Theorem | relexpsucnnl 15003 | A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpsucl 15004 | A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpsucr 15005 | A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexpsucrd 15006 | A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | ||
| Theorem | relexpsucld 15007 | A reduction for relation exponentiation to the left. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | ||
| Theorem | relexpcnv 15008 | Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) | ||
| Theorem | relexpcnvd 15009 | Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) | ||
| Theorem | relexp0rel 15010 | The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) | ||
| Theorem | relexprelg 15011 | The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexprel 15012 | The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpreld 15013 | The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpnndm 15014 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) | ||
| Theorem | relexpdmg 15015 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relexpdm 15016 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpdmd 15017 | The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpnnrn 15018 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) | ||
| Theorem | relexprng 15019 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relexprn 15020 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexprnd 15021 | The range of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ran (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpfld 15022 | The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpfldd 15023 | The field of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∪ ∪ (𝑅↑𝑟𝑁) ⊆ ∪ ∪ 𝑅) | ||
| Theorem | relexpaddnn 15024 | Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Theorem | relexpuzrel 15025 | The exponentiation of a class to an integer greater than 1 is a relation. (Contributed by RP, 23-May-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟𝑁)) | ||
| Theorem | relexpaddg 15026 | Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Theorem | relexpaddd 15027 | Relation composition becomes addition under exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) | ||
| Syntax | crtrcl 15028 | Extend class notation with recursively defined reflexive, transitive closure. |
| class t*rec | ||
| Definition | df-rtrclrec 15029* | The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015.) |
| ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
| Theorem | rtrclreclem1 15030 | The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) | ||
| Theorem | dfrtrclrec2 15031* | If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
| Theorem | rtrclreclem2 15032 | The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) | ||
| Theorem | rtrclreclem3 15033 | The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)) | ||
| Theorem | rtrclreclem4 15034* | The reflexive, transitive closure of 𝑅 is the smallest reflexive, transitive relation which contains 𝑅 and the identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) | ||
| Theorem | dfrtrcl2 15035 | The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) | ||
If we have a statement that holds for some element, and a relation between elements that implies if it holds for the first element then it must hold for the second element, the principle of transitive induction shows the statement holds for any element related to the first by the (reflexive-)transitive closure of the relation. | ||
| Theorem | relexpindlem 15036* | Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) | ||
| Theorem | relexpind 15037* | Principle of transitive induction, finite version. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑋 → 𝜏))) | ||
| Theorem | rtrclind 15038* | Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
| ⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏)) | ||
| Syntax | cshi 15039 | Extend class notation with function shifter. |
| class shift | ||
| Definition | df-shft 15040* | Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ℂ) and produces a new function on ℂ. See shftval 15047 for its value. (Contributed by NM, 20-Jul-2005.) |
| ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) | ||
| Theorem | shftlem 15041* | Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) | ||
| Theorem | shftuz 15042* | A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) | ||
| Theorem | shftfval 15043* | The value of the sequence shifter operation is a function on ℂ. 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | ||
| Theorem | shftdm 15044* | Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) | ||
| Theorem | shftfib 15045 | Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) | ||
| Theorem | shftfn 15046* | Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) | ||
| Theorem | shftval 15047 | Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
| Theorem | shftval2 15048 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) | ||
| Theorem | shftval3 15049 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) | ||
| Theorem | shftval4 15050 | Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) | ||
| Theorem | shftval5 15051 | Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘𝐵)) | ||
| Theorem | shftf 15052* | Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) | ||
| Theorem | 2shfti 15053 | Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) | ||
| Theorem | shftidt2 15054 | Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) | ||
| Theorem | shftidt 15055 | Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹‘𝐴)) | ||
| Theorem | shftcan1 15056 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
| Theorem | shftcan2 15057 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
| Theorem | seqshft 15058 | Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) | ||
| Syntax | csgn 15059 | Extend class notation to include the Signum function. |
| class sgn | ||
| Definition | df-sgn 15060 | Signum function. We do not call it "sign", which is homophonic with "sine" (df-sin 16042). Defined as "sgn" in ISO 80000-2:2009(E) operation 2-9.13. It is named "sign" (with the same definition) in the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4 16042. We define this over ℝ* (df-xr 11219) instead of ℝ so that it can accept +∞ and -∞. Note that df-psgn 19428 defines the sign of a permutation, which is different. Value shown in sgnval 15061. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | ||
| Theorem | sgnval 15061 | Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | ||
| Theorem | sgn0 15062 | The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ (sgn‘0) = 0 | ||
| Theorem | sgnp 15063 | The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | ||
| Theorem | sgnrrp 15064 | The signum of a positive real is 1. (Contributed by David A. Wheeler, 18-May-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (sgn‘𝐴) = 1) | ||
| Theorem | sgn1 15065 | The signum of 1 is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘1) = 1 | ||
| Theorem | sgnpnf 15066 | The signum of +∞ is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘+∞) = 1 | ||
| Theorem | sgnn 15067 | The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | ||
| Theorem | sgnmnf 15068 | The signum of -∞ is -1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘-∞) = -1 | ||
| Syntax | ccj 15069 | Extend class notation to include complex conjugate function. |
| class ∗ | ||
| Syntax | cre 15070 | Extend class notation to include real part of a complex number. |
| class ℜ | ||
| Syntax | cim 15071 | Extend class notation to include imaginary part of a complex number. |
| class ℑ | ||
| Definition | df-cj 15072* | Define the complex conjugate function. See cjcli 15142 for its closure and cjval 15075 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | ||
| Definition | df-re 15073 | Define a function whose value is the real part of a complex number. See reval 15079 for its value, recli 15140 for its closure, and replim 15089 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | ||
| Definition | df-im 15074 | Define a function whose value is the imaginary part of a complex number. See imval 15080 for its value, imcli 15141 for its closure, and replim 15089 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | ||
| Theorem | cjval 15075* | The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) | ||
| Theorem | cjth 15076 | The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | ||
| Theorem | cjf 15077 | Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ∗:ℂ⟶ℂ | ||
| Theorem | cjcl 15078 | The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | ||
| Theorem | reval 15079 | The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | ||
| Theorem | imval 15080 | The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) | ||
| Theorem | imre 15081 | The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | ||
| Theorem | reim 15082 | The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) | ||
| Theorem | recl 15083 | The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | ||
| Theorem | imcl 15084 | The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | ||
| Theorem | ref 15085 | Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ℜ:ℂ⟶ℝ | ||
| Theorem | imf 15086 | Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ℑ:ℂ⟶ℝ | ||
| Theorem | crre 15087 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
| Theorem | crim 15088 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
| Theorem | replim 15089 | Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
| Theorem | remim 15090 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
| Theorem | reim0 15091 | The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | ||
| Theorem | reim0b 15092 | A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | ||
| Theorem | rereb 15093 | A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) | ||
| Theorem | mulre 15094 | A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ)) | ||
| Theorem | rere 15095 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | ||
| Theorem | cjreb 15096 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) | ||
| Theorem | recj 15097 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
| Theorem | reneg 15098 | Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
| Theorem | readd 15099 | Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
| Theorem | resub 15100 | Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |