HomeHome Metamath Proof Explorer
Theorem List (p. 151 of 470)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29646)
  Hilbert Space Explorer  Hilbert Space Explorer
(29647-31169)
  Users' Mathboxes  Users' Mathboxes
(31170-46966)
 

Theorem List for Metamath Proof Explorer - 15001-15100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcjnegi 15001 Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.)
๐ด โˆˆ โ„‚    โ‡’   (โˆ—โ€˜-๐ด) = -(โˆ—โ€˜๐ด)
 
Theoremaddcji 15002 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
๐ด โˆˆ โ„‚    โ‡’   (๐ด + (โˆ—โ€˜๐ด)) = (2 ยท (โ„œโ€˜๐ด))
 
Theoremreaddi 15003 Real part distributes over addition. (Contributed by NM, 28-Jul-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โ„œโ€˜(๐ด + ๐ต)) = ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต))
 
Theoremimaddi 15004 Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โ„‘โ€˜(๐ด + ๐ต)) = ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))
 
Theoremremuli 15005 Real part of a product. (Contributed by NM, 28-Jul-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โ„œโ€˜(๐ด ยท ๐ต)) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) โˆ’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)))
 
Theoremimmuli 15006 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โ„‘โ€˜(๐ด ยท ๐ต)) = (((โ„œโ€˜๐ด) ยท (โ„‘โ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„œโ€˜๐ต)))
 
Theoremcjaddi 15007 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โˆ—โ€˜(๐ด + ๐ต)) = ((โˆ—โ€˜๐ด) + (โˆ—โ€˜๐ต))
 
Theoremcjmuli 15008 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โˆ—โ€˜(๐ด ยท ๐ต)) = ((โˆ—โ€˜๐ด) ยท (โˆ—โ€˜๐ต))
 
Theoremipcni 15009 Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (โ„œโ€˜(๐ด ยท (โˆ—โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)))
 
Theoremcjdivi 15010 Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
๐ด โˆˆ โ„‚    &   ๐ต โˆˆ โ„‚    โ‡’   (๐ต โ‰  0 โ†’ (โˆ—โ€˜(๐ด / ๐ต)) = ((โˆ—โ€˜๐ด) / (โˆ—โ€˜๐ต)))
 
Theoremcrrei 15011 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
๐ด โˆˆ โ„    &   ๐ต โˆˆ โ„    โ‡’   (โ„œโ€˜(๐ด + (i ยท ๐ต))) = ๐ด
 
Theoremcrimi 15012 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
๐ด โˆˆ โ„    &   ๐ต โˆˆ โ„    โ‡’   (โ„‘โ€˜(๐ด + (i ยท ๐ต))) = ๐ต
 
Theoremrecld 15013 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
 
Theoremimcld 15014 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
 
Theoremcjcld 15015 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜๐ด) โˆˆ โ„‚)
 
Theoremreplimd 15016 Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ ๐ด = ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))))
 
Theoremremimd 15017 Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜๐ด) = ((โ„œโ€˜๐ด) โˆ’ (i ยท (โ„‘โ€˜๐ด))))
 
Theoremcjcjd 15018 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜(โˆ—โ€˜๐ด)) = ๐ด)
 
Theoremreim0bd 15019 A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ (โ„‘โ€˜๐ด) = 0)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„)
 
Theoremrerebd 15020 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ (โ„œโ€˜๐ด) = ๐ด)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„)
 
Theoremcjrebd 15021 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ (โˆ—โ€˜๐ด) = ๐ด)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„)
 
Theoremcjne0d 15022 A number is nonzero iff its complex conjugate is nonzero. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ด โ‰  0)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜๐ด) โ‰  0)
 
Theoremrecjd 15023 Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(โˆ—โ€˜๐ด)) = (โ„œโ€˜๐ด))
 
Theoremimcjd 15024 Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(โˆ—โ€˜๐ด)) = -(โ„‘โ€˜๐ด))
 
Theoremcjmulrcld 15025 A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (๐ด ยท (โˆ—โ€˜๐ด)) โˆˆ โ„)
 
Theoremcjmulvald 15026 A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (๐ด ยท (โˆ—โ€˜๐ด)) = (((โ„œโ€˜๐ด)โ†‘2) + ((โ„‘โ€˜๐ด)โ†‘2)))
 
Theoremcjmulge0d 15027 A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ 0 โ‰ค (๐ด ยท (โˆ—โ€˜๐ด)))
 
Theoremrenegd 15028 Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜-๐ด) = -(โ„œโ€˜๐ด))
 
Theoremimnegd 15029 Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜-๐ด) = -(โ„‘โ€˜๐ด))
 
Theoremcjnegd 15030 Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜-๐ด) = -(โˆ—โ€˜๐ด))
 
Theoremaddcjd 15031 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (๐ด + (โˆ—โ€˜๐ด)) = (2 ยท (โ„œโ€˜๐ด)))
 
Theoremcjexpd 15032 Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜(๐ดโ†‘๐‘)) = ((โˆ—โ€˜๐ด)โ†‘๐‘))
 
Theoremreaddd 15033 Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ด + ๐ต)) = ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)))
 
Theoremimaddd 15034 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(๐ด + ๐ต)) = ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))
 
Theoremresubd 15035 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ด โˆ’ ๐ต)) = ((โ„œโ€˜๐ด) โˆ’ (โ„œโ€˜๐ต)))
 
Theoremimsubd 15036 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(๐ด โˆ’ ๐ต)) = ((โ„‘โ€˜๐ด) โˆ’ (โ„‘โ€˜๐ต)))
 
Theoremremuld 15037 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ด ยท ๐ต)) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) โˆ’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))))
 
Theoremimmuld 15038 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(๐ด ยท ๐ต)) = (((โ„œโ€˜๐ด) ยท (โ„‘โ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„œโ€˜๐ต))))
 
Theoremcjaddd 15039 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜(๐ด + ๐ต)) = ((โˆ—โ€˜๐ด) + (โˆ—โ€˜๐ต)))
 
Theoremcjmuld 15040 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜(๐ด ยท ๐ต)) = ((โˆ—โ€˜๐ด) ยท (โˆ—โ€˜๐ต)))
 
Theoremipcnd 15041 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ด ยท (โˆ—โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))))
 
Theoremcjdivd 15042 Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ต โ‰  0)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜(๐ด / ๐ต)) = ((โˆ—โ€˜๐ด) / (โˆ—โ€˜๐ต)))
 
Theoremrered 15043 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜๐ด) = ๐ด)
 
Theoremreim0d 15044 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜๐ด) = 0)
 
Theoremcjred 15045 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    โ‡’   (๐œ‘ โ†’ (โˆ—โ€˜๐ด) = ๐ด)
 
Theoremremul2d 15046 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ด ยท ๐ต)) = (๐ด ยท (โ„œโ€˜๐ต)))
 
Theoremimmul2d 15047 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(๐ด ยท ๐ต)) = (๐ด ยท (โ„‘โ€˜๐ต)))
 
Theoremredivd 15048 Real part of a division. Related to remul2 14949. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ด โ‰  0)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ต / ๐ด)) = ((โ„œโ€˜๐ต) / ๐ด))
 
Theoremimdivd 15049 Imaginary part of a division. Related to remul2 14949. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)    &   (๐œ‘ โ†’ ๐ด โ‰  0)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(๐ต / ๐ด)) = ((โ„‘โ€˜๐ต) / ๐ด))
 
Theoremcrred 15050 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„)    โ‡’   (๐œ‘ โ†’ (โ„œโ€˜(๐ด + (i ยท ๐ต))) = ๐ด)
 
Theoremcrimd 15051 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„)    โ‡’   (๐œ‘ โ†’ (โ„‘โ€˜(๐ด + (i ยท ๐ต))) = ๐ต)
 
5.9.4  Square root; absolute value
 
Syntaxcsqrt 15052 Extend class notation to include square root of a complex number.
class โˆš
 
Syntaxcabs 15053 Extend class notation to include a function for the absolute value (modulus) of a complex number.
class abs
 
Definitiondf-sqrt 15054* Define a function whose value is the square root of a complex number. For example, (โˆšโ€˜25) = 5 (ex-sqrt 29184).

Since (๐‘ฆโ†‘2) = ๐‘ฅ iff (-๐‘ฆโ†‘2) = ๐‘ฅ, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 29184. The square root symbol was introduced in 1525 by Christoff Rudolff.

See sqrtcl 15181 for its closure, sqrtval 15056 for its value, sqrtth 15184 and sqsqrti 15195 for its relationship to squares, and sqrt11i 15204 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)

โˆš = (๐‘ฅ โˆˆ โ„‚ โ†ฆ (โ„ฉ๐‘ฆ โˆˆ โ„‚ ((๐‘ฆโ†‘2) = ๐‘ฅ โˆง 0 โ‰ค (โ„œโ€˜๐‘ฆ) โˆง (i ยท ๐‘ฆ) โˆ‰ โ„+)))
 
Definitiondf-abs 15055 Define the function for the absolute value (modulus) of a complex number. See abscli 15215 for its closure and absval 15057 or absval2i 15217 for its value. For example, (absโ€˜-2) = 2 (ex-abs 29185). (Contributed by NM, 27-Jul-1999.)
abs = (๐‘ฅ โˆˆ โ„‚ โ†ฆ (โˆšโ€˜(๐‘ฅ ยท (โˆ—โ€˜๐‘ฅ))))
 
Theoremsqrtval 15056* Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.)
(๐ด โˆˆ โ„‚ โ†’ (โˆšโ€˜๐ด) = (โ„ฉ๐‘ฅ โˆˆ โ„‚ ((๐‘ฅโ†‘2) = ๐ด โˆง 0 โ‰ค (โ„œโ€˜๐‘ฅ) โˆง (i ยท ๐‘ฅ) โˆ‰ โ„+)))
 
Theoremabsval 15057 The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(๐ด โˆˆ โ„‚ โ†’ (absโ€˜๐ด) = (โˆšโ€˜(๐ด ยท (โˆ—โ€˜๐ด))))
 
Theoremrennim 15058 A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
(๐ด โˆˆ โ„ โ†’ (i ยท ๐ด) โˆ‰ โ„+)
 
Theoremcnpart 15059 The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map ๐‘ฅ โ†ฆ -๐‘ฅ). (Contributed by Mario Carneiro, 8-Jul-2013.)
((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โ†’ ((0 โ‰ค (โ„œโ€˜๐ด) โˆง (i ยท ๐ด) โˆ‰ โ„+) โ†” ยฌ (0 โ‰ค (โ„œโ€˜-๐ด) โˆง (i ยท -๐ด) โˆ‰ โ„+)))
 
Theoremsqr0lem 15060 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„‚ โˆง ((๐ดโ†‘2) = 0 โˆง 0 โ‰ค (โ„œโ€˜๐ด) โˆง (i ยท ๐ด) โˆ‰ โ„+)) โ†” ๐ด = 0)
 
Theoremsqrt0 15061 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
(โˆšโ€˜0) = 0
 
Theoremsqrlem1 15062* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ โˆ€๐‘ฆ โˆˆ ๐‘† ๐‘ฆ โ‰ค 1)
 
Theoremsqrlem2 15063* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ ๐ด โˆˆ ๐‘†)
 
Theoremsqrlem3 15064* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ (๐‘† โŠ† โ„ โˆง ๐‘† โ‰  โˆ… โˆง โˆƒ๐‘ง โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐‘† ๐‘ฆ โ‰ค ๐‘ง))
 
Theoremsqrlem4 15065* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ (๐ต โˆˆ โ„+ โˆง ๐ต โ‰ค 1))
 
Theoremsqrlem5 15066* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    &   ๐‘‡ = {๐‘ฆ โˆฃ โˆƒ๐‘Ž โˆˆ ๐‘† โˆƒ๐‘ โˆˆ ๐‘† ๐‘ฆ = (๐‘Ž ยท ๐‘)}    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ ((๐‘‡ โŠ† โ„ โˆง ๐‘‡ โ‰  โˆ… โˆง โˆƒ๐‘ฃ โˆˆ โ„ โˆ€๐‘ข โˆˆ ๐‘‡ ๐‘ข โ‰ค ๐‘ฃ) โˆง (๐ตโ†‘2) = sup(๐‘‡, โ„, < )))
 
Theoremsqrlem6 15067* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    &   ๐‘‡ = {๐‘ฆ โˆฃ โˆƒ๐‘Ž โˆˆ ๐‘† โˆƒ๐‘ โˆˆ ๐‘† ๐‘ฆ = (๐‘Ž ยท ๐‘)}    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ (๐ตโ†‘2) โ‰ค ๐ด)
 
Theoremsqrlem7 15068* Lemma for 01sqrex 15069. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.)
๐‘† = {๐‘ฅ โˆˆ โ„+ โˆฃ (๐‘ฅโ†‘2) โ‰ค ๐ด}    &   ๐ต = sup(๐‘†, โ„, < )    &   ๐‘‡ = {๐‘ฆ โˆฃ โˆƒ๐‘Ž โˆˆ ๐‘† โˆƒ๐‘ โˆˆ ๐‘† ๐‘ฆ = (๐‘Ž ยท ๐‘)}    โ‡’   ((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ (๐ตโ†‘2) = ๐ด)
 
Theorem01sqrex 15069* Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.)
((๐ด โˆˆ โ„+ โˆง ๐ด โ‰ค 1) โ†’ โˆƒ๐‘ฅ โˆˆ โ„+ (๐‘ฅ โ‰ค 1 โˆง (๐‘ฅโ†‘2) = ๐ด))
 
Theoremresqrex 15070* Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ โˆƒ๐‘ฅ โˆˆ โ„ (0 โ‰ค ๐‘ฅ โˆง (๐‘ฅโ†‘2) = ๐ด))
 
Theoremsqrmo 15071* Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
(๐ด โˆˆ โ„‚ โ†’ โˆƒ*๐‘ฅ โˆˆ โ„‚ ((๐‘ฅโ†‘2) = ๐ด โˆง 0 โ‰ค (โ„œโ€˜๐‘ฅ) โˆง (i ยท ๐‘ฅ) โˆ‰ โ„+))
 
Theoremresqreu 15072* Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ โˆƒ!๐‘ฅ โˆˆ โ„‚ ((๐‘ฅโ†‘2) = ๐ด โˆง 0 โ‰ค (โ„œโ€˜๐‘ฅ) โˆง (i ยท ๐‘ฅ) โˆ‰ โ„+))
 
Theoremresqrtcl 15073 Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (โˆšโ€˜๐ด) โˆˆ โ„)
 
Theoremresqrtthlem 15074 Lemma for resqrtth 15075. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (((โˆšโ€˜๐ด)โ†‘2) = ๐ด โˆง 0 โ‰ค (โ„œโ€˜(โˆšโ€˜๐ด)) โˆง (i ยท (โˆšโ€˜๐ด)) โˆ‰ โ„+))
 
Theoremresqrtth 15075 Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ ((โˆšโ€˜๐ด)โ†‘2) = ๐ด)
 
Theoremremsqsqrt 15076 Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ด)) = ๐ด)
 
Theoremsqrtge0 15077 The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ 0 โ‰ค (โˆšโ€˜๐ด))
 
Theoremsqrtgt0 15078 The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.)
((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ 0 < (โˆšโ€˜๐ด))
 
Theoremsqrtmul 15079 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) = ((โˆšโ€˜๐ด) ยท (โˆšโ€˜๐ต)))
 
Theoremsqrtle 15080 Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด โ‰ค ๐ต โ†” (โˆšโ€˜๐ด) โ‰ค (โˆšโ€˜๐ต)))
 
Theoremsqrtlt 15081 Square root is strictly monotonic. Closed form of sqrtlti 15209. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด < ๐ต โ†” (โˆšโ€˜๐ด) < (โˆšโ€˜๐ต)))
 
Theoremsqrt11 15082 The square root function is one-to-one. (Contributed by Scott Fenton, 11-Jun-2013.)
(((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((โˆšโ€˜๐ด) = (โˆšโ€˜๐ต) โ†” ๐ด = ๐ต))
 
Theoremsqrt00 15083 A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ ((โˆšโ€˜๐ด) = 0 โ†” ๐ด = 0))
 
Theoremrpsqrtcl 15084 The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.)
(๐ด โˆˆ โ„+ โ†’ (โˆšโ€˜๐ด) โˆˆ โ„+)
 
Theoremsqrtdiv 15085 Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
(((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„+) โ†’ (โˆšโ€˜(๐ด / ๐ต)) = ((โˆšโ€˜๐ด) / (โˆšโ€˜๐ต)))
 
Theoremsqrtneglem 15086 The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (((i ยท (โˆšโ€˜๐ด))โ†‘2) = -๐ด โˆง 0 โ‰ค (โ„œโ€˜(i ยท (โˆšโ€˜๐ด))) โˆง (i ยท (i ยท (โˆšโ€˜๐ด))) โˆ‰ โ„+))
 
Theoremsqrtneg 15087 The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (โˆšโ€˜-๐ด) = (i ยท (โˆšโ€˜๐ด)))
 
Theoremsqrtsq2 15088 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((โˆšโ€˜๐ด) = ๐ต โ†” ๐ด = (๐ตโ†‘2)))
 
Theoremsqrtsq 15089 Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (โˆšโ€˜(๐ดโ†‘2)) = ๐ด)
 
Theoremsqrtmsq 15090 Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โ†’ (โˆšโ€˜(๐ด ยท ๐ด)) = ๐ด)
 
Theoremsqrt1 15091 The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.)
(โˆšโ€˜1) = 1
 
Theoremsqrt4 15092 The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.)
(โˆšโ€˜4) = 2
 
Theoremsqrt9 15093 The square root of 9 is 3. (Contributed by NM, 11-May-2004.)
(โˆšโ€˜9) = 3
 
Theoremsqrt2gt1lt2 15094 The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
(1 < (โˆšโ€˜2) โˆง (โˆšโ€˜2) < 2)
 
Theoremsqrtm1 15095 The imaginary unit is the square root of negative 1. A lot of people like to call this the "definition" of i, but the definition of โˆš df-sqrt 15054 has already been crafted with i being mentioned explicitly, and in any case it doesn't make too much sense to define a value based on a function evaluated outside its domain. A more appropriate view is to take ax-i2m1 11053 or i2 14033 as the "definition", and simply postulate the existence of a number satisfying this property. This is the approach we take here. (Contributed by Mario Carneiro, 10-Jul-2013.)
i = (โˆšโ€˜-1)
 
Theoremnn0sqeq1 15096 A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020.) (Proof shortened by Thierry Arnoux, 6-Jun-2023.)
((๐‘ โˆˆ โ„•0 โˆง (๐‘โ†‘2) = 1) โ†’ ๐‘ = 1)
 
Theoremabsneg 15097 Absolute value of the opposite. (Contributed by NM, 27-Feb-2005.)
(๐ด โˆˆ โ„‚ โ†’ (absโ€˜-๐ด) = (absโ€˜๐ด))
 
Theoremabscl 15098 Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
(๐ด โˆˆ โ„‚ โ†’ (absโ€˜๐ด) โˆˆ โ„)
 
Theoremabscj 15099 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
(๐ด โˆˆ โ„‚ โ†’ (absโ€˜(โˆ—โ€˜๐ด)) = (absโ€˜๐ด))
 
Theoremabsvalsq 15100 Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.)
(๐ด โˆˆ โ„‚ โ†’ ((absโ€˜๐ด)โ†‘2) = (๐ด ยท (โˆ—โ€˜๐ด)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-46966
  Copyright terms: Public domain < Previous  Next >