Home | Metamath
Proof Explorer Theorem List (p. 151 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29266) |
Hilbert Space Explorer
(29267-30789) |
Users' Mathboxes
(30790-46477) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | absre 15001 | Absolute value of a real number. (Contributed by NM, 17-Mar-2005.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
Theorem | absresq 15002 | Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | ||
Theorem | absmod0 15003 | 𝐴 is divisible by 𝐵 iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ ((abs‘𝐴) mod 𝐵) = 0)) | ||
Theorem | absexp 15004 | Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
Theorem | absexpz 15005 | Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
Theorem | abssq 15006 | Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2))) | ||
Theorem | sqabs 15007 | The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | ||
Theorem | absrele 15008 | The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴)) | ||
Theorem | absimle 15009 | The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) | ||
Theorem | max0add 15010 | The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.) |
⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) | ||
Theorem | absz 15011 | A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ)) | ||
Theorem | nn0abscl 15012 | The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | ||
Theorem | zabscl 15013 | The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | ||
Theorem | abslt 15014 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) | ||
Theorem | absle 15015 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | ||
Theorem | abssubne0 15016 | If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) ≠ 0) | ||
Theorem | absdiflt 15017 | The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) | ||
Theorem | absdifle 15018 | The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) | ||
Theorem | elicc4abs 15019 | Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴 − 𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶 − 𝐴)) ≤ 𝐵)) | ||
Theorem | lenegsq 15020 | Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | releabs 15021 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | ||
Theorem | recval 15022 | Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) | ||
Theorem | absidm 15023 | The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.) |
⊢ (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴)) | ||
Theorem | absgt0 15024 | The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴))) | ||
Theorem | nnabscl 15025 | The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | ||
Theorem | abssub 15026 | Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | ||
Theorem | abssubge0 15027 | Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) | ||
Theorem | abssuble0 15028 | Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | absmax 15029 | The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | ||
Theorem | abstri 15030 | Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
Theorem | abs3dif 15031 | Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) | ||
Theorem | abs2dif 15032 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) | ||
Theorem | abs2dif2 15033 | Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
Theorem | abs2difabs 15034 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) | ||
Theorem | abs1m 15035* | For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴))) | ||
Theorem | recan 15036* | Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵)) | ||
Theorem | absf 15037 | Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ abs:ℂ⟶ℝ | ||
Theorem | abs3lem 15038 | Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷)) | ||
Theorem | abslem2 15039 | Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) | ||
Theorem | rddif 15040 | The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) | ||
Theorem | absrdbnd 15041 | Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
⊢ (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)) | ||
Theorem | fzomaxdiflem 15042 | Lemma for fzomaxdif 15043. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) ∈ (0..^(𝐷 − 𝐶))) | ||
Theorem | fzomaxdif 15043 | A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | ||
Theorem | uzin2 15044 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
Theorem | rexanuz 15045* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
Theorem | rexanre 15046* | Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.) |
⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) | ||
Theorem | rexfiuz 15047* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
Theorem | rexuz3 15048* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
Theorem | rexanuz2 15049* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
Theorem | r19.29uz 15050* | A version of 19.29 1876 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
Theorem | r19.2uz 15051* | A version of r19.2z 4426 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
Theorem | rexuzre 15052* | Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → 𝜑))) | ||
Theorem | rexico 15053* | Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) | ||
Theorem | cau3lem 15054* | Lemma for cau3 15055. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝑍 ⊆ ℤ & ⊢ (𝜏 → 𝜓) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) & ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) | ||
Theorem | cau3 15055* | Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 15045 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | ||
Theorem | cau4 15056* | Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
Theorem | caubnd2 15057* | A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) | ||
Theorem | caubnd 15058* | A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) | ||
Theorem | sqreulem 15059 | Lemma for sqreu 15060: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+)) | ||
Theorem | sqreu 15060* | Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
Theorem | sqrtcl 15061 | Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | ||
Theorem | sqrtthlem 15062 | Lemma for sqrtth 15064. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
Theorem | sqrtf 15063 | Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ √:ℂ⟶ℂ | ||
Theorem | sqrtth 15064 | Square root theorem over the complex numbers. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | sqrtrege0 15065 | The square root function must make a choice between the two roots, which differ by a sign change. In the general complex case, the choice of "positive" and "negative" is not so clear. The convention we use is to take the root with positive real part, unless 𝐴 is a nonpositive real (in which case both roots have 0 real part); in this case we take the one in the positive imaginary direction. Another way to look at this is that we choose the root that is largest with respect to lexicographic order on the complex numbers (sorting by real part first, then by imaginary part as tie-breaker). (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) | ||
Theorem | eqsqrtor 15066 | Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = 𝐵 ↔ (𝐴 = (√‘𝐵) ∨ 𝐴 = -(√‘𝐵)))) | ||
Theorem | eqsqrtd 15067 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
Theorem | eqsqrt2d 15068 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 < (ℜ‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
Theorem | amgm2 15069 | Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) | ||
Theorem | sqrtthi 15070 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
Theorem | sqrtcli 15071 | The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) | ||
Theorem | sqrtgt0i 15072 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) | ||
Theorem | sqrtmsqi 15073 | Square root of square. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
Theorem | sqrtsqi 15074 | Square root of square. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) | ||
Theorem | sqsqrti 15075 | Square of square root. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | sqrtge0i 15076 | The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) | ||
Theorem | absidi 15077 | A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) | ||
Theorem | absnidi 15078 | A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) | ||
Theorem | leabsi 15079 | A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ≤ (abs‘𝐴) | ||
Theorem | absori 15080 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 30-Sep-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) | ||
Theorem | absrei 15081 | Absolute value of a real number. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) | ||
Theorem | sqrtpclii 15082 | The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈ ℝ | ||
Theorem | sqrtgt0ii 15083 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) | ||
Theorem | sqrt11i 15084 | The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | sqrtmuli 15085 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
Theorem | sqrtmulii 15086 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) | ||
Theorem | sqrtmsq2i 15087 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) | ||
Theorem | sqrtlei 15088 | Square root is monotonic. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
Theorem | sqrtlti 15089 | Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
Theorem | abslti 15090 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) | ||
Theorem | abslei 15091 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) | ||
Theorem | cnsqrt00 15092 | A square root of a complex number is zero iff its argument is 0. Version of sqrt00 14963 for complex numbers. (Contributed by AV, 26-Jan-2023.) |
⊢ (𝐴 ∈ ℂ → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | absvalsqi 15093 | Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) | ||
Theorem | absvalsq2i 15094 | Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
Theorem | abscli 15095 | Real closure of absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘𝐴) ∈ ℝ | ||
Theorem | absge0i 15096 | Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ 0 ≤ (abs‘𝐴) | ||
Theorem | absval2i 15097 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
Theorem | abs00i 15098 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) | ||
Theorem | absgt0i 15099 | The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)) | ||
Theorem | absnegi 15100 | Absolute value of negative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |