| Metamath
Proof Explorer Theorem List (p. 151 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sgn1 15001 | The signum of 1 is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘1) = 1 | ||
| Theorem | sgnpnf 15002 | The signum of +∞ is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘+∞) = 1 | ||
| Theorem | sgnn 15003 | The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | ||
| Theorem | sgnmnf 15004 | The signum of -∞ is -1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
| ⊢ (sgn‘-∞) = -1 | ||
| Syntax | ccj 15005 | Extend class notation to include complex conjugate function. |
| class ∗ | ||
| Syntax | cre 15006 | Extend class notation to include real part of a complex number. |
| class ℜ | ||
| Syntax | cim 15007 | Extend class notation to include imaginary part of a complex number. |
| class ℑ | ||
| Definition | df-cj 15008* | Define the complex conjugate function. See cjcli 15078 for its closure and cjval 15011 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | ||
| Definition | df-re 15009 | Define a function whose value is the real part of a complex number. See reval 15015 for its value, recli 15076 for its closure, and replim 15025 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | ||
| Definition | df-im 15010 | Define a function whose value is the imaginary part of a complex number. See imval 15016 for its value, imcli 15077 for its closure, and replim 15025 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | ||
| Theorem | cjval 15011* | The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) | ||
| Theorem | cjth 15012 | The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | ||
| Theorem | cjf 15013 | Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ∗:ℂ⟶ℂ | ||
| Theorem | cjcl 15014 | The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | ||
| Theorem | reval 15015 | The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | ||
| Theorem | imval 15016 | The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) | ||
| Theorem | imre 15017 | The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | ||
| Theorem | reim 15018 | The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) | ||
| Theorem | recl 15019 | The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | ||
| Theorem | imcl 15020 | The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | ||
| Theorem | ref 15021 | Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ℜ:ℂ⟶ℝ | ||
| Theorem | imf 15022 | Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| ⊢ ℑ:ℂ⟶ℝ | ||
| Theorem | crre 15023 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
| Theorem | crim 15024 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
| Theorem | replim 15025 | Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
| Theorem | remim 15026 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
| Theorem | reim0 15027 | The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | ||
| Theorem | reim0b 15028 | A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | ||
| Theorem | rereb 15029 | A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) | ||
| Theorem | mulre 15030 | A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ)) | ||
| Theorem | rere 15031 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | ||
| Theorem | cjreb 15032 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) | ||
| Theorem | recj 15033 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
| Theorem | reneg 15034 | Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
| Theorem | readd 15035 | Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
| Theorem | resub 15036 | Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
| Theorem | remullem 15037 | Lemma for remul 15038, immul 15045, and cjmul 15051. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))) | ||
| Theorem | remul 15038 | Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | remul2 15039 | Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
| Theorem | rediv 15040 | Real part of a division. Related to remul2 15039. (Contributed by David A. Wheeler, 10-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) | ||
| Theorem | imcj 15041 | Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
| Theorem | imneg 15042 | The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
| Theorem | imadd 15043 | Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
| Theorem | imsub 15044 | Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
| Theorem | immul 15045 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
| Theorem | immul2 15046 | Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
| Theorem | imdiv 15047 | Imaginary part of a division. Related to immul2 15046. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) | ||
| Theorem | cjre 15048 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | ||
| Theorem | cjcj 15049 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | ||
| Theorem | cjadd 15050 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmul 15051 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnval 15052 | Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjmulrcl 15053 | A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulval 15054 | A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0 15055 | A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | cjneg 15056 | Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcj 15057 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjsub 15058 | Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | ||
| Theorem | cjexp 15059 | Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | imval2 15060 | The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) | ||
| Theorem | re0 15061 | The real part of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (ℜ‘0) = 0 | ||
| Theorem | im0 15062 | The imaginary part of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (ℑ‘0) = 0 | ||
| Theorem | re1 15063 | The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℜ‘1) = 1 | ||
| Theorem | im1 15064 | The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℑ‘1) = 0 | ||
| Theorem | rei 15065 | The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℜ‘i) = 0 | ||
| Theorem | imi 15066 | The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℑ‘i) = 1 | ||
| Theorem | cj0 15067 | The conjugate of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (∗‘0) = 0 | ||
| Theorem | cji 15068 | The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (∗‘i) = -i | ||
| Theorem | cjreim 15069 | The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) | ||
| Theorem | cjreim2 15070 | The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵))) | ||
| Theorem | cj11 15071 | Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | cjne0 15072 | A number is nonzero iff its complex conjugate is nonzero. (Contributed by NM, 29-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0)) | ||
| Theorem | cjdiv 15073 | Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | cnrecnv 15074* | The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 12885. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | ||
| Theorem | sqeqd 15075 | A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) & ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | recli 15076 | The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘𝐴) ∈ ℝ | ||
| Theorem | imcli 15077 | The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘𝐴) ∈ ℝ | ||
| Theorem | cjcli 15078 | Closure law for complex conjugate. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘𝐴) ∈ ℂ | ||
| Theorem | replimi 15079 | Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) | ||
| Theorem | cjcji 15080 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘(∗‘𝐴)) = 𝐴 | ||
| Theorem | reim0bi 15081 | A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0) | ||
| Theorem | rerebi 15082 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴) | ||
| Theorem | cjrebi 15083 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴) | ||
| Theorem | recji 15084 | Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴) | ||
| Theorem | imcji 15085 | Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴) | ||
| Theorem | cjmulrcli 15086 | A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) ∈ ℝ | ||
| Theorem | cjmulvali 15087 | A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
| Theorem | cjmulge0i 15088 | A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ 0 ≤ (𝐴 · (∗‘𝐴)) | ||
| Theorem | renegi 15089 | Real part of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘-𝐴) = -(ℜ‘𝐴) | ||
| Theorem | imnegi 15090 | Imaginary part of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘-𝐴) = -(ℑ‘𝐴) | ||
| Theorem | cjnegi 15091 | Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘-𝐴) = -(∗‘𝐴) | ||
| Theorem | addcji 15092 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)) | ||
| Theorem | readdi 15093 | Real part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)) | ||
| Theorem | imaddi 15094 | Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)) | ||
| Theorem | remuli 15095 | Real part of a product. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
| Theorem | immuli 15096 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) | ||
| Theorem | cjaddi 15097 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)) | ||
| Theorem | cjmuli 15098 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) | ||
| Theorem | ipcni 15099 | Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
| Theorem | cjdivi 15100 | Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |