| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-re | Structured version Visualization version GIF version | ||
| Description: Define a function whose value is the real part of a complex number. See reval 15145 for its value, recli 15206 for its closure, and replim 15155 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| df-re | ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cre 15136 | . 2 class ℜ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11153 | . . 3 class ℂ | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 5 | ccj 15135 | . . . . . 6 class ∗ | |
| 6 | 4, 5 | cfv 6561 | . . . . 5 class (∗‘𝑥) |
| 7 | caddc 11158 | . . . . 5 class + | |
| 8 | 4, 6, 7 | co 7431 | . . . 4 class (𝑥 + (∗‘𝑥)) |
| 9 | c2 12321 | . . . 4 class 2 | |
| 10 | cdiv 11920 | . . . 4 class / | |
| 11 | 8, 9, 10 | co 7431 | . . 3 class ((𝑥 + (∗‘𝑥)) / 2) |
| 12 | 2, 3, 11 | cmpt 5225 | . 2 class (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
| 13 | 1, 12 | wceq 1540 | 1 wff ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reval 15145 ref 15151 cnre2csqima 33910 |
| Copyright terms: Public domain | W3C validator |