Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cjval | Structured version Visualization version GIF version |
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjval | ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥)) | |
2 | 1 | eleq1d 2823 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ)) |
3 | oveq1 7262 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 − 𝑥) = (𝐴 − 𝑥)) | |
4 | 3 | oveq2d 7271 | . . . . 5 ⊢ (𝑦 = 𝐴 → (i · (𝑦 − 𝑥)) = (i · (𝐴 − 𝑥))) |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑦 = 𝐴 → ((i · (𝑦 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
6 | 2, 5 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
7 | 6 | riotabidv 7214 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ)) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
8 | df-cj 14738 | . 2 ⊢ ∗ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ))) | |
9 | riotaex 7216 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ici 10804 + caddc 10805 · cmul 10807 − cmin 11135 ∗ccj 14735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-cj 14738 |
This theorem is referenced by: cjth 14742 remim 14756 |
Copyright terms: Public domain | W3C validator |