MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjval Structured version   Visualization version   GIF version

Theorem cjval 14630
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjval (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cjval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7198 . . . . 5 (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥))
21eleq1d 2815 . . . 4 (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ))
3 oveq1 7198 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑥) = (𝐴𝑥))
43oveq2d 7207 . . . . 5 (𝑦 = 𝐴 → (i · (𝑦𝑥)) = (i · (𝐴𝑥)))
54eleq1d 2815 . . . 4 (𝑦 = 𝐴 → ((i · (𝑦𝑥)) ∈ ℝ ↔ (i · (𝐴𝑥)) ∈ ℝ))
62, 5anbi12d 634 . . 3 (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
76riotabidv 7150 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ)) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
8 df-cj 14627 . 2 ∗ = (𝑦 ∈ ℂ ↦ (𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ)))
9 riotaex 7152 . 2 (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ V
107, 8, 9fvmpt 6796 1 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cfv 6358  crio 7147  (class class class)co 7191  cc 10692  cr 10693  ici 10696   + caddc 10697   · cmul 10699  cmin 11027  ccj 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-riota 7148  df-ov 7194  df-cj 14627
This theorem is referenced by:  cjth  14631  remim  14645
  Copyright terms: Public domain W3C validator