| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cjval | Structured version Visualization version GIF version | ||
| Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| cjval | ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥)) | |
| 2 | 1 | eleq1d 2816 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ)) |
| 3 | oveq1 7353 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 − 𝑥) = (𝐴 − 𝑥)) | |
| 4 | 3 | oveq2d 7362 | . . . . 5 ⊢ (𝑦 = 𝐴 → (i · (𝑦 − 𝑥)) = (i · (𝐴 − 𝑥))) |
| 5 | 4 | eleq1d 2816 | . . . 4 ⊢ (𝑦 = 𝐴 → ((i · (𝑦 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
| 6 | 2, 5 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
| 7 | 6 | riotabidv 7305 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ)) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
| 8 | df-cj 15006 | . 2 ⊢ ∗ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ))) | |
| 9 | riotaex 7307 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6929 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ici 11008 + caddc 11009 · cmul 11011 − cmin 11344 ∗ccj 15003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-cj 15006 |
| This theorem is referenced by: cjth 15010 remim 15024 |
| Copyright terms: Public domain | W3C validator |