![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjval | Structured version Visualization version GIF version |
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjval | ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6983 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥)) | |
2 | 1 | eleq1d 2850 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ)) |
3 | oveq1 6983 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 − 𝑥) = (𝐴 − 𝑥)) | |
4 | 3 | oveq2d 6992 | . . . . 5 ⊢ (𝑦 = 𝐴 → (i · (𝑦 − 𝑥)) = (i · (𝐴 − 𝑥))) |
5 | 4 | eleq1d 2850 | . . . 4 ⊢ (𝑦 = 𝐴 → ((i · (𝑦 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
6 | 2, 5 | anbi12d 621 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
7 | 6 | riotabidv 6939 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ)) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
8 | df-cj 14319 | . 2 ⊢ ∗ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ))) | |
9 | riotaex 6941 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6595 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 ℩crio 6936 (class class class)co 6976 ℂcc 10333 ℝcr 10334 ici 10337 + caddc 10338 · cmul 10340 − cmin 10670 ∗ccj 14316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-iota 6152 df-fun 6190 df-fv 6196 df-riota 6937 df-ov 6979 df-cj 14319 |
This theorem is referenced by: cjth 14323 remim 14337 |
Copyright terms: Public domain | W3C validator |