![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjval | Structured version Visualization version GIF version |
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjval | ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6802 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥)) | |
2 | 1 | eleq1d 2835 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ)) |
3 | oveq1 6802 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 − 𝑥) = (𝐴 − 𝑥)) | |
4 | 3 | oveq2d 6811 | . . . . 5 ⊢ (𝑦 = 𝐴 → (i · (𝑦 − 𝑥)) = (i · (𝐴 − 𝑥))) |
5 | 4 | eleq1d 2835 | . . . 4 ⊢ (𝑦 = 𝐴 → ((i · (𝑦 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
6 | 2, 5 | anbi12d 616 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
7 | 6 | riotabidv 6758 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ)) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
8 | df-cj 14046 | . 2 ⊢ ∗ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ))) | |
9 | riotaex 6760 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ V | |
10 | 7, 8, 9 | fvmpt 6426 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 ℩crio 6755 (class class class)co 6795 ℂcc 10139 ℝcr 10140 ici 10143 + caddc 10144 · cmul 10146 − cmin 10471 ∗ccj 14043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-riota 6756 df-ov 6798 df-cj 14046 |
This theorem is referenced by: cjth 14050 remim 14064 |
Copyright terms: Public domain | W3C validator |