MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjval Structured version   Visualization version   GIF version

Theorem cjval 14456
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjval (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cjval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7146 . . . . 5 (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥))
21eleq1d 2877 . . . 4 (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ))
3 oveq1 7146 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑥) = (𝐴𝑥))
43oveq2d 7155 . . . . 5 (𝑦 = 𝐴 → (i · (𝑦𝑥)) = (i · (𝐴𝑥)))
54eleq1d 2877 . . . 4 (𝑦 = 𝐴 → ((i · (𝑦𝑥)) ∈ ℝ ↔ (i · (𝐴𝑥)) ∈ ℝ))
62, 5anbi12d 633 . . 3 (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
76riotabidv 7099 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ)) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
8 df-cj 14453 . 2 ∗ = (𝑦 ∈ ℂ ↦ (𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ)))
9 riotaex 7101 . 2 (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ V
107, 8, 9fvmpt 6749 1 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  cfv 6328  crio 7096  (class class class)co 7139  cc 10528  cr 10529  ici 10532   + caddc 10533   · cmul 10535  cmin 10863  ccj 14450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6287  df-fun 6330  df-fv 6336  df-riota 7097  df-ov 7142  df-cj 14453
This theorem is referenced by:  cjth  14457  remim  14471
  Copyright terms: Public domain W3C validator