MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjval Structured version   Visualization version   GIF version

Theorem cjval 14813
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjval (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cjval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . 5 (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥))
21eleq1d 2823 . . . 4 (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ))
3 oveq1 7282 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑥) = (𝐴𝑥))
43oveq2d 7291 . . . . 5 (𝑦 = 𝐴 → (i · (𝑦𝑥)) = (i · (𝐴𝑥)))
54eleq1d 2823 . . . 4 (𝑦 = 𝐴 → ((i · (𝑦𝑥)) ∈ ℝ ↔ (i · (𝐴𝑥)) ∈ ℝ))
62, 5anbi12d 631 . . 3 (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
76riotabidv 7234 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ)) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
8 df-cj 14810 . 2 ∗ = (𝑦 ∈ ℂ ↦ (𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦𝑥)) ∈ ℝ)))
9 riotaex 7236 . 2 (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ V
107, 8, 9fvmpt 6875 1 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  crio 7231  (class class class)co 7275  cc 10869  cr 10870  ici 10873   + caddc 10874   · cmul 10876  cmin 11205  ccj 14807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278  df-cj 14810
This theorem is referenced by:  cjth  14814  remim  14828
  Copyright terms: Public domain W3C validator