![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjf | Structured version Visualization version GIF version |
Description: Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjf | ⊢ ∗:ℂ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cj 15064 | . 2 ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | |
2 | cju 12224 | . . 3 ⊢ (𝑥 ∈ ℂ → ∃!𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ)) | |
3 | riotacl 7388 | . . 3 ⊢ (∃!𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ) → (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ)) ∈ ℂ) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑥 ∈ ℂ → (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ)) ∈ ℂ) |
5 | 1, 4 | fmpti 7116 | 1 ⊢ ∗:ℂ⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2099 ∃!wreu 3369 ⟶wf 6538 ℩crio 7369 (class class class)co 7414 ℂcc 11122 ℝcr 11123 ici 11126 + caddc 11127 · cmul 11129 − cmin 11460 ∗ccj 15061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-cj 15064 |
This theorem is referenced by: cjcl 15070 cjcn2 15562 climcj 15567 rlimcj 15572 fsumcj 15774 cnfldcj 21268 cnfldfun 21273 cnfldfunALT 21274 cnfldcjOLD 21281 cnfldfunOLD 21286 cnfldfunALTOLD 21287 cnfldfunALTOLDOLD 21288 cjcncf 24798 dvcjbr 25855 dvcj 25856 dvfre 25857 dvmptcj 25874 plycjlem 26185 coecj 26187 dchrinv 27168 |
Copyright terms: Public domain | W3C validator |