| Metamath
Proof Explorer Theorem List (p. 228 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-pm2mp 22701* | Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf1lem 22702* | Lemma for pm2mpf1 22707. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑈 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝐾) = (𝑈 decompPMat 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpval 22703* | Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpfval 22704* | A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpcl 22705 | The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ 𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf 22706 | The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf1 22707 | The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpcoe1 22708 | A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑇‘𝑀))‘𝐾) = (𝑀 decompPMat 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | idpm2idmp 22709 | The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐶)) = (1r‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mptcoe1matfsupp 22710* | The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1‘𝑂)‘𝑘)𝐽)) finSupp (0g‘𝑅)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mply1topmatcllem 22711* | Lemma for mply1topmatcl 22713. (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝐼((coe1‘𝑂)‘𝑘)𝐽) · (𝑘𝐸𝑌))) finSupp (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mply1topmatval 22712* | A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼‘𝑂)) = 𝑂) (see mp2pm2mp 22719). (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mply1topmatcl 22713* | A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem1 22714* | Lemma 1 for mp2pm2mp 22719. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem2 22715* | Lemma 2 for mp2pm2mp 22719. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem3 22716* | Lemma 3 for mp2pm2mp 22719. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem4 22717* | Lemma 4 for mp2pm2mp 22719. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = ((coe1‘𝑂)‘𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem5 22718* | Lemma 5 for mp2pm2mp 22719. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼‘𝑂) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mp 22719* | A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑇‘(𝐼‘𝑂)) = 𝑂) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpghmlem2 22720* | Lemma 2 for pm2mpghm 22724. (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpghmlem1 22721 | Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑀 decompPMat 𝐾) ∗ (𝐾 ↑ 𝑋)) ∈ 𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpfo 22722 | The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–onto→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf1o 22723 | The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1-onto→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpghm 22724 | The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpgrpiso 22725 | The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpIso 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpmhmlem1 22726* | Lemma 1 for pm2mpmhm 22728. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpmhmlem2 22727* | Lemma 2 for pm2mpmhm 22728. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑇‘(𝑥(.r‘𝐶)𝑦)) = ((𝑇‘𝑥)(.r‘𝑄)(𝑇‘𝑦))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpmhm 22728 | The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mprhm 22729 | The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingHom 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mprngiso 22730 | The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingIso 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmmpric 22731 | The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ≃𝑟 𝑄) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | monmat2matmon 22732 | The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑀 ∗ (𝐿 ↑ 𝑋))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mp 22733* | The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾 ↑m ℕ0) ∧ 𝑀 finSupp (0g‘𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀‘𝑛) ∗ (𝑛 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients.". Based on the definition of the characteristic polynomial of a square matrix (df-chpmat 22735) the eigenvalues and corresponding eigenvectors can be defined. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The characteristic polynomial of a matrix 𝐴 is the determinant of the characteristic matrix of 𝐴: (𝑡𝐼 − 𝐴). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cchpmat 22734 | Extend class notation with the characteristic polynomial. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class CharPlyMat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-chpmat 22735* | Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "The characteristic polynomial of [an n x n matrix] A, denoted by pA(t), is the polynomial defined by pA ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in [Lang], p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial PM(t) to be the determinant det ( t In - M ) where In is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)( ·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat (Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chmatcl 22736 | Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐻 ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chmatval 22737 | The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ ∼ = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatfval 22738* | Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐷 = (𝑁 maDet 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatval 22739 | The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐷 = (𝑁 maDet 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatply1 22740 | The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatval2 22741* | The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐻 = (Base‘𝐺) & ⊢ 𝑍 = (ℤRHom‘𝑃) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑈 = (mulGrp‘𝑃) & ⊢ × = (.r‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmat0d 22742 | The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (∅ CharPlyMat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1‘𝑅))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmat1dlem 22743 | Lemma for chpmat1d 22744. (Contributed by AV, 7-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠 ‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmat1d 22744 | The characteristic polynomial of a matrix with dimension 1. (Contributed by AV, 7-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem0 22745 | Lemma 0 for chpdmat 22749. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem1 22746 | Lemma 1 for chpdmat 22749. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem2 22747 | Lemma 2 for chpdmat 22749. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇‘𝑀))𝑗) = (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem3 22748 | Lemma 3 for chpdmat 22749. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇‘𝑀))𝐾) = (𝑋 − (𝑆‘(𝐾𝑀𝐾)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmat 22749* | The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋 − (𝑆‘(𝑘𝑀𝑘)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmat 22750* | The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘𝐸)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmat0 22751* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐼𝑀𝐼))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmatgsumbin 22752* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmatgsummon 22753* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑍 = (.g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chp0mat 22754 | The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 0 = (0g‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = ((♯‘𝑁) ↑ 𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpidmat 22755 | The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐼 = (1r‘𝐴) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ − = (-g‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chmaidscmat 22756 | The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 5-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐾 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑆 = (𝑁 ScMat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐶‘𝑀) · 1 ) ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this subsection the function 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) is discussed. This function is involved in the representation of the product of the characteristic matrix of a given matrix and its adjunct as an infinite sum, see cpmadugsum 22786. Therefore, this function is called "characteristic factor function" (in short "chfacf") in the following. It plays an important role in the proof of the Cayley-Hamilton theorem, see cayhamlem1 22774, cayhamlem3 22795 and cayhamlem4 22796. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04if 22757* | The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐴) & ⊢ ((𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐵) & ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐶) & ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑁) = 𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifa 22758* | The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifb 22759* | The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifc 22760* | The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifd 22761* | The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfisf 22762* | The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfisfcpmat 22763* | The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacffsupp 22764* | The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmulcl 22765* | Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmul0 22766* | A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmulfsupp 22767* | A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmulgsum 22768* | Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulcl 22769* | Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmul0 22770* | The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulfsupp 22771* | A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulgsum 22772* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulgsum2 22773* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayhamlem1 22774* | Lemma 1 for cayleyhamilton 22798. (Contributed by AV, 11-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this section, a direct algebraic proof for the Cayley-Hamilton theorem is
provided, according to Wikipedia ("Cayley-Hamilton theorem", 09-Nov-2019,
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem, section
"A direct algebraic proof" (this approach is also used for proving Lemma 1.9 in
[Hefferon] p. 427):
Using this notation, we have:
Following the proof shown in Wikipedia, the following steps are performed:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadurid 22775 | The right-hand fundamental relation of the adjugate (see madurid 22552) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ × = (.r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidgsum 22776* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidgsumm2pm 22777* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmatlem1 22778* | Lemma 1 for cpmidpmat 22781. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmatlem2 22779* | Lemma 2 for cpmidpmat 22781. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ (𝐵 ↑m ℕ0)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmatlem3 22780* | Lemma 3 for cpmidpmat 22781. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 finSupp (0g‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmat 22781* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑍 = (var1‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑄)) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsumlemB 22782* | Lemma B for cpmadugsum 22786. (Contributed by AV, 2-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsumlemC 22783* | Lemma C for cpmadugsum 22786. (Contributed by AV, 2-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsumlemF 22784* | Lemma F for cpmadugsum 22786. (Contributed by AV, 7-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsumfi 22785* | The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsum 22786* | The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidgsum2 22787* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidg2sum 22788* | Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝑈 = (algSc‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadumatpolylem1 22789* | Lemma 1 for cpmadumatpoly 22791. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) ∈ (𝐵 ↑m ℕ0)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadumatpolylem2 22790* | Lemma 2 for cpmadumatpoly 22791. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadumatpoly 22791* | The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayhamlem2 22792 | Lemma for cayhamlem3 22795. (Contributed by AV, 24-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ · = (.r‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀)) = ((𝐿 ↑ 𝑀) · ((𝐻‘𝐿) ∗ 1 ))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chcoeffeqlem 22793* | Lemma for chcoeffeq 22794. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((Poly1‘𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛))( ·𝑠 ‘(Poly1‘𝐴))(𝑛(.g‘(mulGrp‘(Poly1‘𝐴)))(var1‘𝐴))))) = ((Poly1‘𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 1 )( ·𝑠 ‘(Poly1‘𝐴))(𝑛(.g‘(mulGrp‘(Poly1‘𝐴)))(var1‘𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chcoeffeq 22794* | The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayhamlem3 22795* | Lemma for cayhamlem4 22796. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayhamlem4 22796* | Lemma for cayleyhamilton 22798. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayleyhamilton0 22797* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22798 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22799)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝑍 = (0g‘𝑌) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayleyhamilton 22798* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayleyhamiltonALT 22799* | Alternate proof of cayleyhamilton 22798, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 22797 directly, but has the same structure as the proof of cayleyhamilton0 22797. In contrast to the proof of cayleyhamilton0 22797, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayleyhamilton1 22800* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22798, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹‘𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐿 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑍 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |