| Metamath
Proof Explorer Theorem List (p. 228 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw1 22701* | Write a polynomial matrix as a matrix of sums of scaled monomials. (Contributed by AV, 29-Sep-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw2lem 22702* | Lemma for pmatcollpw2 22703. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw2 22703* | Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ × = ( ·𝑠 ‘𝑃) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | monmatcollpw 22704 | The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 22695 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)) → (((𝐿 ↑ 𝑋) · (𝑇‘𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpwlem 22705 | Lemma for pmatcollpw 22706. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠 ‘𝑃)(𝑛 ↑ 𝑋)) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw 22706* | Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpwfi 22707* | Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 3-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw3lem 22708* | Lemma for pmatcollpw3 22709 and pmatcollpw3fi 22710: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m 𝐼)𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw3 22709* | Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑓 ∈ (𝐷 ↑m ℕ0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw3fi 22710* | Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw3fi1lem1 22711* | Lemma 1 for pmatcollpw3fi1 22713. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 )) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷 ↑m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝐺‘𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝐻‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw3fi1lem2 22712* | Lemma 2 for pmatcollpw3fi1 22713. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑓 ∈ (𝐷 ↑m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpw3fi1 22713* | Write a polynomial matrix (over a commutative ring) as a finite sum of (at least two) products of variable powers and constant matrices with scalar entries. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷 ↑m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpwscmatlem1 22714 | Lemma 1 for pmatcollpwscmat 22716. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝐶) & ⊢ 𝑀 = (𝑄 ∗ 1 ) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1‘𝑄)‘𝐿)), (0g‘𝑃))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpwscmatlem2 22715 | Lemma 2 for pmatcollpwscmat 22716. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝐶) & ⊢ 𝑀 = (𝑄 ∗ 1 ) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1‘𝑄)‘𝐿)) ∗ 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmatcollpwscmat 22716* | Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝐶) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐷 = (Base‘𝐴) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝐶) & ⊢ 𝑀 = (𝑄 ∗ 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ ((𝑈‘((coe1‘𝑄)‘𝑛)) ∗ 1 ))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The main result of this section is Theorem pmmpric 22748, which shows that the
ring of polynomial matrices and the ring of polynomials having matrices as
coefficients (called "polynomials over matrices" in the following) are
isomorphic:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cpm2mp 22717 | Extend class notation with the transformation of a polynomial matrix into a polynomial over matrices. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class pMatToMatPoly | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-pm2mp 22718* | Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf1lem 22719* | Lemma for pm2mpf1 22724. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑈 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝐾) = (𝑈 decompPMat 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpval 22720* | Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpfval 22721* | A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpcl 22722 | The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ 𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf 22723 | The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf1 22724 | The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpcoe1 22725 | A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0)) → ((coe1‘(𝑇‘𝑀))‘𝐾) = (𝑀 decompPMat 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | idpm2idmp 22726 | The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐶)) = (1r‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mptcoe1matfsupp 22727* | The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1‘𝑂)‘𝑘)𝐽)) finSupp (0g‘𝑅)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mply1topmatcllem 22728* | Lemma for mply1topmatcl 22730. (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝐼((coe1‘𝑂)‘𝑘)𝐽) · (𝑘𝐸𝑌))) finSupp (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mply1topmatval 22729* | A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼‘𝑂)) = 𝑂) (see mp2pm2mp 22736). (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mply1topmatcl 22730* | A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem1 22731* | Lemma 1 for mp2pm2mp 22736. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem2 22732* | Lemma 2 for mp2pm2mp 22736. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem3 22733* | Lemma 3 for mp2pm2mp 22736. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem4 22734* | Lemma 4 for mp2pm2mp 22736. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼‘𝑂) decompPMat 𝐾) = ((coe1‘𝑂)‘𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mplem5 22735* | Lemma 5 for mp2pm2mp 22736. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼‘𝑂) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mp2pm2mp 22736* | A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑇‘(𝐼‘𝑂)) = 𝑂) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpghmlem2 22737* | Lemma 2 for pm2mpghm 22741. (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpghmlem1 22738 | Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑀 decompPMat 𝐾) ∗ (𝐾 ↑ 𝑋)) ∈ 𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpfo 22739 | The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–onto→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpf1o 22740 | The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1-onto→𝐿) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpghm 22741 | The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpgrpiso 22742 | The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpIso 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpmhmlem1 22743* | Lemma 1 for pm2mpmhm 22745. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐿 = (Base‘𝑄) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋))) finSupp (0g‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpmhmlem2 22744* | Lemma 2 for pm2mpmhm 22745. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑇‘(𝑥(.r‘𝐶)𝑦)) = ((𝑇‘𝑥)(.r‘𝑄)(𝑇‘𝑦))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mpmhm 22745 | The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mprhm 22746 | The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingHom 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mprngiso 22747 | The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingIso 𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pmmpric 22748 | The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑄 = (Poly1‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ≃𝑟 𝑄) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | monmat2matmon 22749 | The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑀 ∗ (𝐿 ↑ 𝑋))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pm2mp 22750* | The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐶 = (𝑁 Mat 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝐴) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑌 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐶) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾 ↑m ℕ0) ∧ 𝑀 finSupp (0g‘𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀‘𝑛) ∗ (𝑛 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients.". Based on the definition of the characteristic polynomial of a square matrix (df-chpmat 22752) the eigenvalues and corresponding eigenvectors can be defined. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The characteristic polynomial of a matrix 𝐴 is the determinant of the characteristic matrix of 𝐴: (𝑡𝐼 − 𝐴). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cchpmat 22751 | Extend class notation with the characteristic polynomial. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class CharPlyMat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-chpmat 22752* | Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "The characteristic polynomial of [an n x n matrix] A, denoted by pA(t), is the polynomial defined by pA ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in [Lang], p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial PM(t) to be the determinant det ( t In - M ) where In is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)( ·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat (Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chmatcl 22753 | Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐻 ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chmatval 22754 | The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐻 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ ∼ = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 ∼ (𝐼(𝑇‘𝑀)𝐽)), ( 0 ∼ (𝐼(𝑇‘𝑀)𝐽)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatfval 22755* | Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐷 = (𝑁 maDet 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐶 = (𝑚 ∈ 𝐵 ↦ (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑚))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatval 22756 | The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐷 = (𝑁 maDet 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝐷‘((𝑋 · 1 ) − (𝑇‘𝑀)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatply1 22757 | The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmatval2 22758* | The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ − = (-g‘𝑌) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐺 = (SymGrp‘𝑁) & ⊢ 𝐻 = (Base‘𝐺) & ⊢ 𝑍 = (ℤRHom‘𝑃) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑈 = (mulGrp‘𝑃) & ⊢ × = (.r‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmat0d 22759 | The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (∅ CharPlyMat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1‘𝑅))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmat1dlem 22760 | Lemma for chpmat1d 22761. (Contributed by AV, 7-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼((𝑋( ·𝑠 ‘𝐺)(1r‘𝐺))(-g‘𝐺)(𝑇‘𝑀))𝐼) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpmat1d 22761 | The characteristic polynomial of a matrix with dimension 1. (Contributed by AV, 7-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝑆 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑋 − (𝑆‘(𝐼𝑀𝐼)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem0 22762 | Lemma 0 for chpdmat 22766. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem1 22763 | Lemma 1 for chpdmat 22766. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem2 22764 | Lemma 2 for chpdmat 22766. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇‘𝑀))𝑗) = (0g‘𝑃)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmatlem3 22765 | Lemma 3 for chpdmat 22766. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝑄 = (𝑁 Mat 𝑃) & ⊢ 1 = (1r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝑄) & ⊢ 𝑍 = (-g‘𝑄) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇‘𝑀))𝐾) = (𝑋 − (𝑆‘(𝐾𝑀𝐾)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpdmat 22766* | The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋 − (𝑆‘(𝑘𝑀𝑘)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmat 22767* | The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘𝐸)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmat0 22768* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐼𝑀𝐼))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmatgsumbin 22769* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpscmatgsummon 22770* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑍 = (.g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chp0mat 22771 | The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 0 = (0g‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = ((♯‘𝑁) ↑ 𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chpidmat 22772 | The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐼 = (1r‘𝐴) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ − = (-g‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chmaidscmat 22773 | The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 5-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐾 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑆 = (𝑁 ScMat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐶‘𝑀) · 1 ) ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this subsection the function 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) is discussed. This function is involved in the representation of the product of the characteristic matrix of a given matrix and its adjunct as an infinite sum, see cpmadugsum 22803. Therefore, this function is called "characteristic factor function" (in short "chfacf") in the following. It plays an important role in the proof of the Cayley-Hamilton theorem, see cayhamlem1 22791, cayhamlem3 22812 and cayhamlem4 22813. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04if 22774* | The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐴) & ⊢ ((𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐵) & ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐶) & ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑁) = 𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifa 22775* | The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifb 22776* | The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifc 22777* | The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fvmptnn04ifd 22778* | The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfisf 22779* | The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfisfcpmat 22780* | The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacffsupp 22781* | The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmulcl 22782* | Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmul0 22783* | A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmulfsupp 22784* | A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfscmulgsum 22785* | Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulcl 22786* | Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmul0 22787* | The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulfsupp 22788* | A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulgsum 22789* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chfacfpmmulgsum2 22790* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cayhamlem1 22791* | Lemma 1 for cayleyhamilton 22815. (Contributed by AV, 11-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this section, a direct algebraic proof for the Cayley-Hamilton theorem is
provided, according to Wikipedia ("Cayley-Hamilton theorem", 09-Nov-2019,
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem, section
"A direct algebraic proof" (this approach is also used for proving Lemma 1.9 in
[Hefferon] p. 427):
Using this notation, we have:
Following the proof shown in Wikipedia, the following steps are performed:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadurid 22792 | The right-hand fundamental relation of the adjugate (see madurid 22569) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ × = (.r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidgsum 22793* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidgsumm2pm 22794* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmatlem1 22795* | Lemma 1 for cpmidpmat 22798. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmatlem2 22796* | Lemma 2 for cpmidpmat 22798. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ (𝐵 ↑m ℕ0)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmatlem3 22797* | Lemma 3 for cpmidpmat 22798. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 finSupp (0g‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmidpmat 22798* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑍 = (var1‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑄)) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsumlemB 22799* | Lemma B for cpmadugsum 22803. (Contributed by AV, 2-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | cpmadugsumlemC 22800* | Lemma C for cpmadugsum 22803. (Contributed by AV, 2-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |