Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldval | Structured version Visualization version GIF version |
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
cldval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldval | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 22036 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | pwexg 5304 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
4 | rabexg 5258 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ∈ V) |
6 | unieq 4855 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
7 | 6, 1 | eqtr4di 2797 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
8 | 7 | pweqd 4557 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
9 | 7 | difeq1d 4060 | . . . . 5 ⊢ (𝑗 = 𝐽 → (∪ 𝑗 ∖ 𝑥) = (𝑋 ∖ 𝑥)) |
10 | eleq12 2829 | . . . . 5 ⊢ (((∪ 𝑗 ∖ 𝑥) = (𝑋 ∖ 𝑥) ∧ 𝑗 = 𝐽) → ((∪ 𝑗 ∖ 𝑥) ∈ 𝑗 ↔ (𝑋 ∖ 𝑥) ∈ 𝐽)) | |
11 | 9, 10 | mpancom 684 | . . . 4 ⊢ (𝑗 = 𝐽 → ((∪ 𝑗 ∖ 𝑥) ∈ 𝑗 ↔ (𝑋 ∖ 𝑥) ∈ 𝐽)) |
12 | 8, 11 | rabeqbidv 3418 | . . 3 ⊢ (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
13 | df-cld 22151 | . . 3 ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | |
14 | 12, 13 | fvmptg 6867 | . 2 ⊢ ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
15 | 5, 14 | mpdan 683 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 {crab 3069 Vcvv 3430 ∖ cdif 3888 𝒫 cpw 4538 ∪ cuni 4844 ‘cfv 6430 Topctop 22023 Clsdccld 22148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-top 22024 df-cld 22151 |
This theorem is referenced by: iscld 22159 mretopd 22224 |
Copyright terms: Public domain | W3C validator |