MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldval Structured version   Visualization version   GIF version

Theorem cldval 22941
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldval (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cldval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 22824 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5320 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 rabexg 5279 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
6 unieq 4871 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2786 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4568 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
97difeq1d 4074 . . . . 5 (𝑗 = 𝐽 → ( 𝑗𝑥) = (𝑋𝑥))
10 eleq12 2823 . . . . 5 ((( 𝑗𝑥) = (𝑋𝑥) ∧ 𝑗 = 𝐽) → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
119, 10mpancom 688 . . . 4 (𝑗 = 𝐽 → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
128, 11rabeqbidv 3414 . . 3 (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
13 df-cld 22937 . . 3 Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
1412, 13fvmptg 6935 . 2 ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
155, 14mpdan 687 1 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  𝒫 cpw 4551   cuni 4860  cfv 6488  Topctop 22811  Clsdccld 22934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-top 22812  df-cld 22937
This theorem is referenced by:  iscld  22945  mretopd  23010
  Copyright terms: Public domain W3C validator