MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldval Structured version   Visualization version   GIF version

Theorem cldval 22939
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldval (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cldval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 22822 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5316 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 rabexg 5275 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
6 unieq 4870 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2784 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4567 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
97difeq1d 4075 . . . . 5 (𝑗 = 𝐽 → ( 𝑗𝑥) = (𝑋𝑥))
10 eleq12 2821 . . . . 5 ((( 𝑗𝑥) = (𝑋𝑥) ∧ 𝑗 = 𝐽) → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
119, 10mpancom 688 . . . 4 (𝑗 = 𝐽 → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
128, 11rabeqbidv 3413 . . 3 (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
13 df-cld 22935 . . 3 Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
1412, 13fvmptg 6927 . 2 ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
155, 14mpdan 687 1 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3899  𝒫 cpw 4550   cuni 4859  cfv 6481  Topctop 22809  Clsdccld 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-top 22810  df-cld 22935
This theorem is referenced by:  iscld  22943  mretopd  23008
  Copyright terms: Public domain W3C validator