| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldval | Structured version Visualization version GIF version | ||
| Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| cldval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldval | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn 22824 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 3 | pwexg 5320 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
| 4 | rabexg 5279 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ∈ V) |
| 6 | unieq 4871 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 7 | 6, 1 | eqtr4di 2786 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 8 | 7 | pweqd 4568 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
| 9 | 7 | difeq1d 4074 | . . . . 5 ⊢ (𝑗 = 𝐽 → (∪ 𝑗 ∖ 𝑥) = (𝑋 ∖ 𝑥)) |
| 10 | eleq12 2823 | . . . . 5 ⊢ (((∪ 𝑗 ∖ 𝑥) = (𝑋 ∖ 𝑥) ∧ 𝑗 = 𝐽) → ((∪ 𝑗 ∖ 𝑥) ∈ 𝑗 ↔ (𝑋 ∖ 𝑥) ∈ 𝐽)) | |
| 11 | 9, 10 | mpancom 688 | . . . 4 ⊢ (𝑗 = 𝐽 → ((∪ 𝑗 ∖ 𝑥) ∈ 𝑗 ↔ (𝑋 ∖ 𝑥) ∈ 𝐽)) |
| 12 | 8, 11 | rabeqbidv 3414 | . . 3 ⊢ (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
| 13 | df-cld 22937 | . . 3 ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | |
| 14 | 12, 13 | fvmptg 6935 | . 2 ⊢ ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
| 15 | 5, 14 | mpdan 687 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 𝒫 cpw 4551 ∪ cuni 4860 ‘cfv 6488 Topctop 22811 Clsdccld 22934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-top 22812 df-cld 22937 |
| This theorem is referenced by: iscld 22945 mretopd 23010 |
| Copyright terms: Public domain | W3C validator |