![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fncld | Structured version Visualization version GIF version |
Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fncld | ⊢ Clsd Fn Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vuniex 7758 | . . . 4 ⊢ ∪ 𝑗 ∈ V | |
2 | 1 | pwex 5386 | . . 3 ⊢ 𝒫 ∪ 𝑗 ∈ V |
3 | 2 | rabex 5345 | . 2 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} ∈ V |
4 | df-cld 23043 | . 2 ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | |
5 | 3, 4 | fnmpti 6712 | 1 ⊢ Clsd Fn Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3433 ∖ cdif 3960 𝒫 cpw 4605 ∪ cuni 4912 Fn wfn 6558 Topctop 22915 Clsdccld 23040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-fun 6565 df-fn 6566 df-cld 23043 |
This theorem is referenced by: cldrcl 23050 iscldtop 23119 |
Copyright terms: Public domain | W3C validator |