| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fncld | Structured version Visualization version GIF version | ||
| Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fncld | ⊢ Clsd Fn Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 7742 | . . . 4 ⊢ ∪ 𝑗 ∈ V | |
| 2 | 1 | pwex 5362 | . . 3 ⊢ 𝒫 ∪ 𝑗 ∈ V |
| 3 | 2 | rabex 5321 | . 2 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} ∈ V |
| 4 | df-cld 22992 | . 2 ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | |
| 5 | 3, 4 | fnmpti 6692 | 1 ⊢ Clsd Fn Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {crab 3420 ∖ cdif 3930 𝒫 cpw 4582 ∪ cuni 4889 Fn wfn 6537 Topctop 22866 Clsdccld 22989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-fun 6544 df-fn 6545 df-cld 22992 |
| This theorem is referenced by: cldrcl 22999 iscldtop 23068 |
| Copyright terms: Public domain | W3C validator |